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LECTURE 1

The Brouwer Fixed Point Theorem

Even the simplest problems in topology – for instance, whether two topological spaces
X and Y are homeomorphic – are oftentimes very hard to answer. In order to show
X and Y are homeomorphic, it suffices to find a single homeomorphism f : X → Y .
But in order to show that they are not homeomorphic, one needs to prove no such
homeomorphism can exist. And how on earth are you meant to do that? Even if you
can’t find one, how do you know that tomorrow some really smart mathematician
isn’t going to magically come up with one? This is where algebraic topology comes in.
The idea is to associate algebraic invariants of a topological space. Here “invariants”
means that two homeomorphic spaces should have the same invariants. Thus to show
two spaces are not homeomorphic, it suffices to show they have different invariants.

So, to summarise the entire course:

• Topology is hard.

• Algebra is easy.

• Algebraic topology converts topological problems into algebraic problems.

• Profit.

We illustrate this philosophy with an example. Let Bn ⊂ Rn denote the closed
n-dimensional unit ball

Bn = {x ∈ Rn | |x| ≤ 1}.

The boundary of Bn is the (n− 1)-dimensional unit sphere Sn−1:

Sn−1 = {x ∈ Rn | |x| = 1}.

The following famous theorem is due to Brouwer.

Theorem 1.1 (The Brouwer Fixed Point Theorem). For all n ≥ 1, every continuous
map f : Bn → Bn has a fixed point.

In the case n = 1, this theorem has a simple proof using connectivity:

Proof of Theorem 1.1 in the case n = 1. Suppose f(−1) = a and f(1) = b. If a = −1
or b = 1 we are done, so assume that a > −1 and b < 1. Consider the graph of f :

Gr(f) := {(x, f(x)) | x ∈ [−1, 1]}.

A fixed point of f is the same thing as a point of intersection between Gr(f) and the
diagonal

∆ := {(x, x) | x ∈ [−1, 1]}.
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Since f is continuous, Gr(f) is connected1. Let

A := {(x, f(x)) | f(x) > x}, B := {(x, f(x)) | f(x) < x}.

Then (−1, a) ∈ A and (1, b) ∈ B, so in particular A and B are both non-empty. If
Gr(f) ∩ ∆ = ∅ then Gr(f) = A ∪ B. Since f is continuous, A and B are open2 in
Gr(f). This contradicts the fact that Gr(f) is connected.

Interestingly, it is not known how to extend this simple argument to deal with
the case n > 1. Nevertheless there are several different complicated arguments. For
instance, there is an analytical argument that goes as follows: first approximate f by
a sequence of differentiable functions gk with the property that f has a fixed point
if and only if all the gk do for large k. Then prove directly that any differentiable
function must have a fixed point.

The “cutest” proof uses methods from algebraic topology. Later on in the course
we will construct a homology functor Hn for each n ≥ 0, which associates to any
topological space X an abelian group Hn(X), and to any continuous map f : X → Y
a homomorphism

Hn(f) : Hn(X)→ Hn(Y ).

The induced maps Hn(f) have the property that if f : X → Y and g : Y → Z then

Hn(g ◦ f) = Hn(g) ◦Hn(f) : Hn(X)→ Hn(Z), (1.1)

and
Hn(idX) = idHn(X) : Hn(X)→ Hn(X). (1.2)

Moreover the homology functor Hn vanishes on the ball Bn+1 but not on the sphere
Sn:

Hn(Bn+1) = 0, Hn(Sn) 6= 0, ∀n ≥ 1. (1.3)

The construction of Hn and the verification of (1.1), (1.2) and (1.3) will take some
time. Nevertheless, armed with these only these properties, it is easy to prove The-
orem 1.1 in all dimensions.

Definition 1.2. Suppose X is a subspace of a topological space Y . We say that X
is a retract of Y if there exists a continuous map r : Y → X such that r(x) = x for
all x ∈ X. Equivalently, denoting by ı : X ↪→ Y the inclusion, this means that the
following diagram commutes:

Y

X X

r

id

ı

1It is the image of the continuous map B1 → B1 ×B1 given by x 7→ (x, f(x)).
2Consider the map g : Gr(f) → R given by g(x, f(x)) = x − f(x). Then A = g−1

(
(−∞, 0)

)
and

B = g−1
(
(0,∞

)
).
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Lemma 1.3. For all n ≥ 1, Sn is not a retract of Bn+1.

Proof. Suppose for contradiction that there exists a retraction r : Bn+1 → Sn, so
that the following diagram commutes:

Bn+1

Sn Sn

r

id

ı

Equation (1.1) means that we can “apply the homology functor Hn” to this commu-
tative diagram to obtain another one:

Hn(Bn+1)

Hn(Sn) Hn(Sn)

Hn(r)

Hn(id)

Hn(ı)

Note this diagram is a commutative diagram of group homomorphisms between
abelian groups, rather than a commutative diagram of continuous maps between
topological spaces. Since Hn(Bn+1) = 0 by (1.3) the map Hn(r) : Hn(Bn+1) →
Hn(Sn) is the zero map. But since Hn(id) = id by (1.2) and Hn(Sn) 6= 0, this is a
contradiction.

Remark 1.4. In fact, Lemma 1.3 is also true for n = 0. The 0-dimensional sphere
is just {−1, 1}, which is disconnected. Since [−1, 1] is connected and the image of
a connected subset under a continuous map is connected, it follows there does not
exist any continuous surjective map r : B1 → S0 (and thus in particular there does
not exist a retraction.)

We now show how Theorem 1.1 follows from Lemma 1.3.

Proof of Theorem 1.1. Take n ≥ 0. Suppose f : Bn+1 → Bn+1 has no fixed points.
Then for every point x ∈ Bn+1, there is a unique line that starts at f(x), goes
through x, and then hits a point on the boundary Sn of Bn+1. Let us denote by
r : Bn+1 → Sn the map that sends x to the point on Sn that this line hits. See
Figure 1.1. Since f is continuous, the map r is also continuous3. If x ∈ Sn then
clearly r(x) = x. Thus r is a retraction. This contradicts4 Lemma 1.3.

Let us now formalise the notion of a “homology functor”, by introducing elements
of a field of mathematics called category theory. In this course, we will only ever
use category theory as a convenient “language” to phrase theorems from algebraic
topology in—we will never actually use any genuine theorems in category theory.

3This is an easy exercise.
4If n = 0, apply Remark 1.4 instead of Lemma 1.3.
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Figure 1.1: The retract r.

Remark 1.5. A word of warning: category theory is often (lovingly) referred to as
abstract nonsense. But fear not: nothing we will do will ever be that abstract!

Definition 1.6. A category C consists of three ingredients. The first is a class
obj(C) of objects. Secondly, for each ordered pair of objects (A,B) there is a set
Hom(A,B) of morphisms from A to B. Sometimes instead of f ∈ Hom(A,B) we

write f : A → B or A
f−→ B. Finally, there is a rule, called composition, which

associates to every ordered triple (A,B,C) of objects a map

Hom(A,B)×Hom(B,C)→ Hom(A,C),

written
(f, g) 7→ g ◦ f,

which satisfies the following three axioms:

1. The Hom sets are pairwise disjoint; that is, each f ∈ Hom(A,B) has a unique
domain A and a unique target B.

2. Composition is associative whenever defined, i.e. given

A
f−→ B

g−→ C
h−→ D

one has
(h ◦ g) ◦ f = h ◦ (g ◦ f).

3. For each A ∈ obj(C) there is a unique morphism idA ∈ Hom(A,A) called the
identity which has the property that f ◦ idA = f and idB ◦ f = f for every
f : A→ B.

Remark 1.7. Note that we said that obj(C) was a class and Hom(A,B) was a set.
There is (an important, but technical) difference between a class and a set. If you’ve
ever taken a class on logic/set theory, you’ll know that not every “collection” of
objects is formally a set. For instance, the collection of all sets is itself not a set! A
class is a more general concept (the collection of all sets is a class). Nevertheless, as
far as this course is concerned, the distinction is irrelevant, and you are free to ignore
this remark!

4

https://en.wikipedia.org/wiki/Abstract_nonsense


Here are four examples of categories:

Example 1.8. The category Sets of sets. The objects of Sets are all the sets, and
Hom(A,B) is just the set of all functions from A to B, and composition is just the
usual composition of functions.

Example 1.9. The category Top of topological spaces. The objects of Top are
all the topological spaces, and Hom(X,Y ) is just the set C(X,Y ) of all continuous
functions from X to Y , and composition is just the usual composition of functions.

Example 1.10. The category Groups of groups. The objects of Groups are just
groups, and Hom(G,H) is just the set Hom(G,H) of all homomorphisms from G to
H, and composition is just the usual composition of homomorphisms.

Example 1.11. The category Ab of abelian groups. The objects of Ab are just
abelian groups, and Hom(G,H) is again just the set Hom(G,H) of all homomor-
phisms from G to H, and composition is just the usual composition of homomor-
phisms.

Remark 1.12. The fact that we require the morphism sets to be pairwise disjoint has
several pedantic consequences. For example, suppose A ( B are two sets. Then the
inclusion ı : A ↪→ B and the identity map idA : A→ A are different morphisms, since
they have different targets. One should be aware that we only allow the composition
g ◦ f when the range of f is exactly the same as the domain of g. Suppose X,Y, Y ′

and Z are topological spaces with Y ( Y ′. From the point of view of analysis,
say, if f : X → Y and g : Y ′ → Z are continuous functions then the composition
g ◦ f : X → Z is clearly a well-defined continuous function. But from the point of
view of category theory, the composition g ◦ f does not exist! Rather, one must first
take the inclusion ı : Y ↪→ Y ′ and then consider the composition g ◦ ı ◦ f , which is a
well-defined element of the morphism space C(X,Z).

A functor is a map from one category to another:

Definition 1.13. Suppose C and D are two categories. A functor T : C → D
associates to each A ∈ obj(C) an object T (A) ∈ obj(D), and to each morphism

A
f−→ B in C a morphism T (A)

T (f)−−−→ T (B) in D which satisfies the following two
axioms:

1. If A
f−→ B

g−→ C in C then T (A)
T (f)−−−→ T (B)

T (g)−−−→ T (C) in D and

T (g ◦ f) = T (g) ◦ T (f).

2. T (idA) = idT (A) for every A ∈ obj(C).

The easiest example of a functor is a forgetful functor:

Example 1.14. The forgetful functor Top → Sets simply “forgets” the topological
structure. Thus it assigns to each topological space its underlying set, and to each
continuous function it assigns the same function, considered now simply as a map
between two sets (i.e. it “forgets” the function is continuous).
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We can now make sense of the homology functor mentioned earlier.

Theorem 1.15. For each n ≥ 0 there exists a functor Hn : Top → Ab called a
homology functor with the property that for all n ≥ 0,

Hn(Bn+1) = 0, Hn(Sn) 6= 0.

I say “a” homology functor since Hn is not (quite) unique (we will construct
several different ones eventually). In fact, before constructing homology functors we
will first construct an “easier” functor called the fundamental group. This will
(almost5) be a functor

π1 : Top→ Groups,

and its construction will take us up to the end of Lecture 4.

5Strictly speaking π1 will be a functor from the category of pointed topological spaces, more on this
later.
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LECTURE 2

The notion of homotopy

In this lecture we introduce the notion of “deforming” one function (or one space)
into another, which mathematically is known as homotopy. Throughout this course,
we denote by

I := [0, 1], ∂I = {0, 1}.

Definition 2.1. Suppose X and Y are topological spaces and f0, f1 : X → Y are
two continuous functions. A homotopy from f0 to f1 is a continuous function

F : X × I → Y

such that
F (x, 0) = f0(x), F (x, 1) = f1(x).

We write F : f0 ' f1 to indicate F is a homotopy from f0 to f1, and we write f0 ' f1

to indicate there exists such an F .

Given a homotopy F : f0 ' f1, setting ft(x) := F (x, t), we obtain a family ft of
continuous functions which deforms f0 at time t = 0 into f1 at time t = 1. Since F
is continuous on X × I, the family ft depends continuously on t.

The following lemma will be used time and time again. We will refer to it as “the
gluing lemma”.

Lemma 2.2 (The gluing lemma). Let X be a topological space. Assume X can be
written as a finite union

X =
N⋃
i=1

Xi,

where each Xi is a closed subspace of X. Assume we are given a topological space
Y and continuous functions

fi : Xi → Y,

with the property that

fi|Xi∩Xj = fj |Xi∩Xj , ∀ i, j such that Xi ∩Xj 6= ∅.

Then there exists a unique continuous function f : X → Y such that

f |Xi = fi, ∀ i = 1, . . . , N. (2.1)

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Proof. We need only check that the function f defined as in (2.1) is continuous (it
is clearly unique). Suppose C ⊆ Y is a closed set. Then

f−1(C) =

(
N⋃
i=1

Xi

)
∩ f−1(C)

=

N⋃
i=1

(Xi ∩ f−1(C))

=
N⋃
i=1

(Xi ∩ f−1
i (C))

=

N⋃
i=1

f−1
i (C).

Since each fi is continuous, this is the finite union of closed sets and hence is closed.
Since C was arbitrary, f is continuous.

On Problem Sheet A you will enjoy proving the following minor variation of
Lemma 2.2.

Lemma 2.3 (Another gluing lemma). Let X be a topological space. Assume X can
be written as an arbitrary union

X =
⋃
i

Xi,

where each Xi is an open subspace of X. Assume we given a topological space Y
and continuous functions

fi : Xi → Y,

with the property that

fi|Xi∩Xj = fj |Xi∩Xj , ∀ i, j such that Xi ∩Xj 6= ∅.

Then there exists a unique continuous function f : X → Y such that

f |Xi = fi, ∀ i ∈ N.

Our first application of the gluing lemma is to show that homotopy is an equiva-
lence relation on the space of continuous maps.

Proposition 2.4. Let X and Y denote two topological spaces. Then homotopy is
an equivalence relation on the space C(X,Y ) of all continuous maps from X to Y .

Proof. We check the three properties:

• Reflexivity : if f ∈ C(X,Y ) define F (x, t) := f(x). Then clearly F : f ' f .

• Symmetry : if F : f ' g then define G(x, t) := F (x, 1− t). Then G : g ' f .
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• Transitivity : if F : f ' g and G : g ' h, define

H(x, t) :=

{
F (x, 2t), 0 ≤ t ≤ 1

2 ,

G(x, 2t− 1), 1
2 ≤ t ≤ 1.

Since F and G agree on their overlap X × {1
2} ⊂ X × I the gluing lemma

implies that H is continuous. Since H(x, 0) = f and H(x, 1) = h, this shows
that f ' h.

This completes the proof.

Definition 2.5. We denote by [f ] the equivalence class of f under homotopy, and
we denote by [X,Y ] the space of equivalence classes.

We now show that composition of equivalence classes makes sense.

Proposition 2.6. Suppose f0, f1 : X → Y and g0, g1 : Y → Z are continuous func-
tions with f0 ' f1 and g0 ' g1. Then g0 ◦ f0 ' g1 ◦ f1, that is

[f0] = [f1] and [g0] = [g1] ⇒ [g0 ◦ f0] = [g1 ◦ f1].

Proof. Suppose F : f0 ' f1 and G : g0 ' g1. Define

H : X × I → Z, H(x, t) = G(f0(x), t).

Then H is continuous and since

H(x, 0) = G(f0(x), 0) = g0(f0(x))

and
H(x, 1) = G(f0(x), 1) = g1(f0(x)),

this shows that
g0 ◦ f0 ' g1 ◦ f0. (2.2)

Next, consider
K : X × I → Z, K(x, t) = g1(F (x, t)).

Then K is continuous, and since

K(x, 0) = g1(F (x, 0)) = g1(f0(x))

and
K(x, 1) = g1(F (x, 1)) = g1(f1(x)),

this shows that
g1 ◦ f0 ' g1 ◦ f1. (2.3)

Combining (2.2) and (2.3) and using transitivity, we see that g0 ◦ f0 ' g1 ◦ f1 as
required.

Now for this lecture’s serving of abstract nonsense. Let us explain how to take
quotients of categories.
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Definition 2.7. Suppose C is a category. A congruence on C is an equivalence
relation ∼ on the union ⋃

(A,B)∈obj(C)×obj(C)

Hom(A,B)

such that:

1. If f ∈ Hom(A,B) and f ∼ g then g ∈ Hom(A,B).

2. If f0 : A→ B and g0 : B → C and f0 ∼ f1 and g0 ∼ g1 then g0 ◦ f0 ∼ g1 ◦ f1.

A congruence allows us to form the quotient category:

Proposition 2.8. Suppose C is a category and ∼ is a congruence on C. Denote
by [f ] the equivalence class of a morphism under ∼. Then there is a well-defined
quotient category C′ given as follows: the objects of C′ are simply obj(C) again,
and

HomC′(A,B) = {[f ] | f ∈ Hom(A,B)} ,

and composition in C′ is given by

[g] ◦ [f ] := [g ◦ f ].

Proof. Property (1) of Definition 2.7 shows that the morphism sets of C′ are well-
defined sets that are pairwise disjoint. Property (2) of Definition 2.7 shows that the
composition in C′ is well-defined. It is clear that this composition is associative, and
[idA] is the identity morphism in HomC′(A,A). This completes the proof.

It will not surprise you to learn we have just constructed a congruence.

Example 2.9. The homotopy category hTop is the category whose objects are
topological spaces, with morphism spaces [X,Y ] the equivalence class of continuous
maps under homotopy. This is the quotient category of Top under the congruence
obtained via homotopy.

Definition 2.10. Let C be a category. An isomorphism in C is a morphism f ∈
Hom(A,B) for which there exists another morphism g ∈ Hom(B,A) such that g◦f =
idA and f ◦ g = idB.

Thus in Sets, isomorphisms are just bijections. In Groups, isomorphisms are group
isomorphisms, and in Top, isomorphisms are homeomorphims. Let us unravel what
an isomorphism in hTop is.

Definition 2.11. A continuous map f : X → Y between two topological spaces is
called a homotopy equivalence if there exists a continuous map g : Y → X such
that g ◦ f ' idX and f ◦ g ' idY .

Thus an isomorphism in hTop is a morphism [f ], where f is a homotopy equiva-
lence.

Definition 2.12. We say that two spaces X and Y have the same homotopy type
if there exists a homotopy equivalence from f : X → Y .
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Clearly homeomorphic spaces have the same homotopy type, but it is not nec-
essarily the case that spaces with the same homotopy type are homeomorphic. We
shall see an example of this next lecture. Let us now look at the “opposite” notion
to a homotopy equivalence.

Definition 2.13. A continuous map f : X → Y is said to be nullhomotopic if
there exists a constant map c : X → Y (i.e. map such that there exists q ∈ Y such
that c(x) = q for all x ∈ X) such that f ' c.

When X = Sn, there is an easy criterion for deciding whether a map is nullho-
motopic. Before stating the result, we need one more definition.

Definition 2.14. Suppose X and Y are topological spaces and X ′ is a subset of
X. We say that two continuous map f0, f1 : X → Y such that f0|X′ = f1|X′ are
homotopic relative to X ′ or homotopic rel X ′ for short if there exists a homotopy
F : f0 ' f1 such that

F (x, t) = f0(x) = f1(x), ∀x ∈ X ′,∀ t ∈ I.

If such an F exists we write F : f0 ' f1 rel X ′.

This generalises Definition 2.1, since taking X ′ = ∅ recovers our original notion
of homotopy. For fixed X being homotopic rel X ′ is an equivalence relation – you
will prove a more general version statement on Problem Sheet B (a special case of
this is given in Proposition 3.13 next lecture.) By a slight abuse of notation if X ′ is
a single point {p} we will write “rel p” instead of “rel {p}”.

Proposition 2.15. Let Y be a topological space and n ≥ 0. The following are
equivalent for a continuous map f : Sn → Y :

1. f is nullhomotopic.

2. There exists a continuous map g : Bn+1 → Y such that g|Sn = f .

3. If p ∈ Sn and c : Sn → Y is the constant map c(x) = f(p) then f is homotopic
to c rel p.

Proof. We first show (1) implies (2). Suppose f is nullhomotopic, i.e. there exists
F : f ' c, where c is the constant map c(x) = q. Define g : Bn+1 → Y by

g(x) :=

{
q, 0 ≤ |x| ≤ 1

2 ,

F
(
x
|x| , 2− 2|x|

)
, 1

2 ≤ |x| ≤ 1.

This makes sense: if x 6= 0 then x
|x| belongs to Sn, and if 1

2 ≤ |x| ≤ 1 then 2−2|x| ∈ I.

If |x| = 1
2 then

F
(
x
|x| , 1

)
= c
(
x
|x|
)

= q.

The gluing lemma shows that g is continuous. Moreover g does extend f since if
x ∈ Sn then |x| = 1 and hence g(x) = F (x, 0) = f(x).
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To show (2) implies (3), suppose g : Bn+1 → Y extends f . Define F : Sn× I → Y
by

F (x, t) = g((1− t)x+ tp).

This makes sense as (1 − t)x + tp belongs to Bn+1. F is clearly continuous, and
F (x, 0) = g(x) = f(x) (since g extends f) and F (x, 1) = g(p) = f(p) = c(x). Thus
F : f ' c. Moreover F (p, t) = g(p) = f(p) for all t ∈ I, and hence F : f ' c rel p.

Finally, it is obvious that (3) implies (1).

Definition 2.16. A space X is said to be contractible if the identity map idX is
nullhomotopic.

Corollary 2.17. For all n ≥ 0, the sphere Sn is not contractible.

This proof uses Lemma 1.3, which we have not yet properly proved (we haven’t
constructed the homology functor yet!). You will be relieved to note that we will not
use the proof of Corollary 2.17 in the construction of the homology functor.

Proof. Take Y = Sn and f = idSn . Then by Proposition 2.15, if f is nullhomotopic
then there exists a continuous map g : Bn+1 → Sn which extends f . The map g is
then a retraction, and this contradicts Lemma 1.3.
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LECTURE 3

Paths and the fundamental groupoid

In this lecture we define a rather pathetic functor, called π0. We then define the
fundamental groupoid. In the next lecture we will use the fundamental groupoid to
define a much more interesting functor, the fundamental group π1.

Definition 3.1. A path u in a topological space X is a continuous map u : I → X.
If u(0) = x and u(1) = y we say u is a path from x to y. If x = y then we say that
u is a loop.

We will always use the letters u, v and w to denote paths (in contrast to f, g and h
for arbitrary continuous maps). Moreover we will parametrise a path with the letter
s, so u is the map s 7→ u(s), thus keeping the letter t for a homotopy parameter.
This will hopefully help to keep the notation clear. Paths gives us a new notion of
connectivity.

Definition 3.2. A topological space X is path connected if for all x, y ∈ X there
exists a path from x to y.

Hopefully you are all easily able to prove the following result1.

Lemma 3.3. Let X and Y be topological spaces. Then:

1. If X is path connected then X is connected (but the converse is not necessarily
true).

2. If X and Y are path connected then so is X × Y .

3. If f : X → Y is continuous and X is path connected then so is f(X).

Here we prove the following equally easy result:

Proposition 3.4. If X is a topological space then the binary relation ∼ on X defined
by “x ∼ y if there exists a path from x to y” is an equivalence relation.

Proof. A constant path based at x shows that x ∼ x for all x ∈ X. If u is a path
from x to y then the path ū(s) := u(1 − s) is a path from y to x, and hence x ∼ y
implies y ∼ x. Finally if u is a path from x to y and v is a path from y to z then

w(s) :=

{
u(2s), 0 ≤ s ≤ 1

2 ,

v(2s− 1), 1
2 ≤ s ≤ 1,

(3.1)

is a well-defined path from x to z (the gluing lemma shows that w is continuous.)
Thus x ∼ y and y ∼ z implies x ∼ z.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Definition 3.5. The equivalence classes of X under the equivalence relation ∼ are
called the path components of X.

We now construct the functor π0.

Definition 3.6. Given a topological space X, let π0(X) denote the set of path
components of X. If f : X → Y is a continuous map, define π0(f) : π0(X) → π0(Y )
to be the map that send a path component X ′ of X to the unique path component
of Y containing f(X ′) (this is well-defined due to Lemma 3.3.)

We then have:

Proposition 3.7. π0 : Top → Sets is a functor. Moreover if f ' g then π0(f) =
π0(g).

Proof. The fact that π0 is a functor is easy to check (i.e. that π0 preserves identities
and composition). Let us check that homotopic maps have the same image under π0.
Suppose F : f ' g. If X ′ is a path component of X then X ′ × I is path connected
and hence so is F (X ′ × I) (here we are using Proposition 3.3 twice). Since

f(X ′) = F (X ′ × {0}) ⊆ F (X ′ × I)

and
g(X ′) = F (X ′ × {1}) ⊆ F (X ′ × I),

we see that the unique path component of Y containing F (X ′ × I) contains both
f(X ′) and g(X ′). Thus π0(f) = π0(g).

Corollary 3.8. If X and Y have the same homotopy type then they have the same
number of path components.

Corollary 3.8 can be proved directly, but let us give an “abstract” proof using
Problem A.2 and Problem A.3 from Problem Sheet A.

Proof. By the last part of Proposition 3.7 and Problem A.3, we may regard π0 as a
functor hTop→ Sets. If X and Y have the same homotopy type then there exists a
continuous map f : X → Y such that [f ] is an isomorphism in hTop. Then by Problem
A.2, π0([f ]) is an isomorphism in Sets. An isomorphism in Sets is a bijection; thus
π0(X) and π0(Y ) have the same cardinality.

Corollary 3.8 is about as interesting as it gets when it comes to the functor π0.
This is because π0 has the misfortune of taking values in Sets, and there is not much
one can with a set other than count it (i.e. the only obstruction to two sets being iso-
morphic is that they should have the same cardinality) Next lecture we will introduce
another functor π1 which takes values in Groups. As groups have many obstructions
to being isomorphic, this functor will be considerably more interesting.

The basic idea behind π1 is that one can “multiply” paths if one ends where the
other begins, via (3.1). Let us formalise this as a definition.
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Definition 3.9. Let u and v be paths in X with u(1) = v(0). Then we define

(u ∗ v)(s) :=

{
u(2s), 0 ≤ s ≤ 1

2 ,

v(2s− 1), 1
2 ≤ s ≤ 1.

Remark 3.10. Note that the ordering here is the opposite to composition: u ∗ v
means “first do u, then do v”, meanwhile g ◦ f means “first do f , then do g”.

Our aim is to construct a group whose elements are certain homotopy classes of
paths in X with binary operation given by multiplying paths as above. However by
Problem B.1 on Problem Sheet B, if X is path connected then since I is contractible,
all paths u : I → X are homotopic, and thus if we tried to construct a group from
homotopy classes of paths this group would have precisely one element (and so would
be just as uninteresting as π0(X)!) To recify this problem we use relative homotopy
classes.

Definition 3.11. We define the path class of a path u : I → X to be the equivalence
class [u] of u, where the equivalence relation is being homotopic relative to ∂I =
{0, 1}.

Remark 3.12. There is a potential for confusion here, in that we are using the
same notation [·] to denote both the homotopy class and the relative homotopy class.
However, it should always be clear from the context which is intended. In particular,
for paths we will only ever talk about their path class, not their homotopy class, and
thus the notation [u] always means the path class.

The next result is similar to Proposition 2.6.

Proposition 3.13. Suppose u0, u1 : I → X and v0, v1 : I → X are paths with

u0(1) = u1(1) = v0(0) = v1(0).

Assume that
[u0] = [u1] and [v0] = [v1].

Then
[u0 ∗ v0] = [u1 ∗ v1].

Proof. If U : u0 ' u1 rel ∂I and V : v0 ' v1 rel ∂I then the map W : I×I → X given
by

W (s, t) :=

{
U(2s, t), 0 ≤ s ≤ 1

2 ,

V (2s− 1, t), 1
2 ≤ s ≤ 1,

is a continuous map (the gluing lemma applies because functions agree on {1
2} × I)

which determines a homotopy from u0 ∗ v0 to u1 ∗ v1 rel ∂I.

If u is a path from x to y, then running backwards along u gives a path from y
to x. Let us fix some notation for this:

3



Definition 3.14. Given a path u : I → X, we denote by ū : I → X the path u
parametrised backwards:

ū(s) = u(1− s).

Next, let us given a name to the constant path:

Definition 3.15. Given a point p ∈ X, we denote by ep the constant path ep(s) = p.
By a slight abuse of notation we denote by [p] the path class [ep].

We now use this data to define a category. We will phrase this is as “definition”
and then prove afterwards that it really is well-defined.

Definition 3.16. Let X be a topological space. We define the fundamental
groupoid of X to be the category Π(X) where:

• obj(Π(X)) = X, that is, the objects of Π(X) are the points in X themselves,

• Hom(x, y) is the set of path classes of paths from x to y:

Hom(x, y) := {[u] | u is a path from x to y} ,

• and finally the composition

Hom(x, y)×Hom(y, z)→ Hom(x, z)

is given by (
[u], [v]

)
7→ [u ∗ v]

(note by assumption this concatenation makes sense as u(1) = y = v(0)).

Let us prove this really does form a category.

Proposition 3.17. Let X be a topological space. Then Π(X) is a well-defined
category. The identity element of Hom(p, p) is [p].

Proof. From Definition 1.6, there are three things we need to verify:

1. the Hom sets are pairwise disjoint,

2. that composition is associative when defined,

3. that there exists an identity element in each Hom set.

Here (1) is obvious. Let us first prove (3). We claim that [p] (i.e. the path class
of ep) is the identity element in Hom(p, p). For this we must prove that for any path
u with u(0) = p we have ep ∗u ' u rel ∂I, and similarly for any path v with v(1) = p
we have v ∗ ep ' v rel ∂I. We will prove the first statement only, as the second is
similar. Consider Figure 3.1. The shaded triangle is the set {(s, t) | 2s ≤ 1− t}. For
fixed t, consider the horizontal line Lt that runs from the start of the shaded region
to the right-hand edge (the point (1, t)). The function

lt(s) :=
s− 1

2(1− t)
1− 1

2(1− t)

4



Figure 3.1: Proving ep ∗ u ' u rel ∂I.

maps Lt onto [0, 1]. Now consider the map U : I × I → X given by

U(s, t) :=

{
p, 2s ≤ 1− t,
u(lt(s)), 2s ≥ 1− t.

The gluing lemma shows that U is continuous, and by construction U : ep ∗ u ' u rel
∂I.

Now let us prove associativity. Suppose u, v and w are three paths with u(1) =
v(0) and v(1) = w(0). This is a similar but slightly trickier argument, and we will not
write out the formulae precisely. Consider Figure 3.2. Draw two slanted lines, one

Figure 3.2: Proving (u ∗ v) ∗ w ' u ∗ (v ∗ w) rel ∂I.

that starts at (1/4, 1) and runs to (1/2, 0), and one that starts at (1/2, 1) and runs
to (3/4, 0). Now let Lt, Mt and Nt denote the three horizontal lines as marked that
come from intersecting the horizontal line with t fixed. Then let lt, mt and nt denote
reparametrisations that map Lt, Mt and Nt onto [0, 1] respectively. The desired
homotopy is U is obtained by setting U(t, s) = u(lt(s)) on the left-hand region,
setting U(s, t) = v(mt(s)) on the middle region and finally setting U(t, s) = w(nt(s))
on the right-hand region. The gluing lemma shows that U is continuous, and by
construction we have U : (u∗v)∗w ' u∗ (v ∗w) rel ∂I. This completes the proof.

In fact, the category Π(X) has an additional special property:
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Proposition 3.18. Every morphism in Π(X) is an isomorphism. More precisely, for
any path u from x to y, one has

[u] ∗ [ū] = [x], [ū] ∗ [u] = [y].

Proof. We must show u ∗ ū ' ex rel ∂I and ū ∗ u ' ey rel ∂I. Again, I will prove
only the first statement. Moreover this time round, I will give the formulae but not
the picture2. To this end consider the function U : I × I → X given by

U(s, t) :=

{
u
(
2s(1− t)

)
, 0 ≤ s ≤ 1

2 ,

u
(
2(1− s)(1− t)

)
, 1

2 ≤ s ≤ 1.

The gluing lemma shows that U is continuous, and one checks that U : u ∗ ū ' ex rel
∂I. This completes the proof.

Categories with this property have a special name.

Definition 3.19. Let C be a category. We say that C is a groupoid category if:

• C is a small category3, which by definition means that obj(C) is a set and not
just a class, cf. Remark 1.7.

• Every morphism f : A→ B in C is an isomorphism.

Thus Proposition 3.18 can alternatively be rephrased as: the fundamental groupoid
is a groupoid cateogory.

2And thus you should draw the picture out!
3Nothing we ever do in this course will ever need to worry about the distinction between a set and a

class, so you are free to ignore this part of the definition if you want ...
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LECTURE 4

The fundamental group

In this lecture we define our first genuinely exciting functor, π1. The idea is simply
to restrict to loops.

Definition 4.1. Let X be a topological space and fix a point p ∈ X, which we call
the basepoint. The fundamental group of X with basepoint p is

π1(X, p) := HomΠ(X)(p, p) = {[u] | u is a loop in X based at p} .

An immediate corollary of Proposition 3.17 is the following result.

Corollary 4.2. For any topological space X and any p ∈ X, the set π1(X, p) is a
group with multiplication given by

[u] ∗ [v] := [u ∗ v]

and identity element [p]. The inverse of an element [u] is given by [ū]:

[u]−1 = [ū].

Since the fundamental group π1(X, p) involves a choice of basepoint p, in order
to make π1 into a proper functor we need to work with a slightly different category.
Before introducing this, let us explain how a smaller category can sit inside a larger
one.

Definition 4.3. Suppose C and D are two categories. We say that C is a subcate-
gory of D if:

1. obj(C) ⊆ obj(D),

2. HomC(A,B) ⊆ HomD(A,B) for all A,B ∈ obj(C), where we denote Hom sets
in C by HomC(�,�),

3. if f ∈ HomC(A,B) and g ∈ HomC(B,C) then the composite g◦f ∈ HomC(A,C)
is equal to the composite g ◦ f ∈ HomD(A,C),

4. if C ∈ obj(C) then idC ∈ HomC(C,C) is equal to idC ∈ HomD(C,C).

If for every pair A,B ∈ obj(C) one always has HomC(A,B) = HomD(A,B) then we
say that C is a full subcategory of D.

As an example, the category Ab is a full subcategory of Groups.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Example 4.4. The category Top2 has as objects all pairs (X,X ′) where X is a
topological space and X ′ ⊆ X is a subspace. A morphism (X,X ′) → (Y, Y ′) is a
pair (f, f ′) of continuous maps f : X → Y and f ′ : X ′ → Y ′ such that the following
diagram commutes, where the horizontal maps are inclusions:

X ′ X

Y ′ Y

f ′ f

The composition law is the usual one. Slightly less pedantically, we can think of a
morphism in Hom((X,X ′), (Y, Y ′)) simply as a continuous map f : X → Y with the
property that f(X ′) ⊆ Y ′.

We can regard Top as a subcategory of Top2 if we identify a space X with the
pair (X, ∅). For us, it is also useful to consider the case where both X ′ and Y ′ are a
single point in X and Y respectively. This gets its own name.

Example 4.5. The category Top∗ of pointed topological spaces has as objects
all ordered pairs (X, p) where X is a topological space and p is a point in X, referred
to as the basepoint. Given two objects (X, p) and (Y, q), the morphism space is
simply the set of continuous maps f : X → Y which send the basepoint p in X to
the basepoint q ∈ Y :

Hom((X, p), (Y, q)) := {f ∈ C(X,Y ) | f(p) = q} .

We call such a map a pointed map.

We will write f : (X, p) → (Y, q) as shorthand to indicate that f is a continuous
map from X to Y satisfying f(p) = q (and hence a morphism in Top∗.) Note that
Top∗ is again a subcategory of Top2. Let us now show that π1 is a functor from Top∗
to Groups.

Definition 4.6. Suppose f : (X, p)→ (Y, q) is a pointed map. Define

π1(f) : π1(X, p)→ π1(Y, q), [u] 7→ [f ◦ u].

This is well-defined: firstly f ◦ u : I → Y is a continuous path that starts and
ends at q, and hence [f ◦ u] is indeed an element of π1(Y, q). Moreover if u ' v rel
∂I then f ◦ u ' f ◦ v rel ∂I by Problem B.2 on Problem Sheet B.

Proposition 4.7. π1 : Top∗ → Groups is a functor. Moreover if f, g : (X, p)→ (Y, q)
are continuous maps with f ' g rel p then π1(f) = π1(g).

Proof. Suppose f : (X, p)→ (Y, q) is a pointed map. To show that π1(f) is a homo-
morphism, observe that if u and v are closed paths based at p ∈ X then

f ◦ (u ∗ v) = (f ◦ u) ∗ (f ◦ v)

(this is an actual pointwise equality, not just homotopy!). The fact that π1 preserves
composition and identities in Top∗ is clear. Finally, if f ' g rel p then by Problem
B.2 on Problem Sheet B again, one obtains f ◦ u ' g ◦ u rel ∂I for any closed curve
u in X based at p. Thus π1(f) = π1(g).
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Remark 4.8. It follows from Problem B.2 that being homotopic rel p defines an
equivalence relation on pointed maps (X, p)→ (Y, q), and hence a congruence on the
category Top∗. The associated quotient category is denoted by hTop∗. By analogy
with the category hTop, we write [(X, p), (Y, q)] for the morphism set between two
objects (X, p) and (Y, q) in hTop∗. The last statement of Proposition 4.7 together
with Problem A.3 implies that π1 induces a functor π1 : hTop∗ → Groups.

Remark 4.9. We won’t need this (so I won’t spell out the relevant definitions), but
the association [u] 7→ [f ◦u] makes perfect sense for arbitrary path classes, and hence
given a continuous map f : X → Y , we obtain a map Π(f) : Π(X) → Π(Y ) defined
by

Π(f) : HomΠ(X)(x, y)→ HomΠ(Y )(f(x), f(y)), [u] 7→ [f ◦ u].

This makes the fundamental groupoid into a functor

Π : Top→ Groupoids,

where Groupoids is the category of groupoids1.

The next result shows that when studying fundamental groups, we may as well
assume that our spaces are path connected.

Proposition 4.10. Let X be a topological space, let p ∈ X, and let X ′ denote the
path component containing p. Then the inclusion ı : X ′ ↪→ X induces an isomorphism
on π1:

π1(X ′, p) ∼= π1(X, p).

Proof. Suppose [u] ∈ kerπ1(ı). This means that ı ◦ u ' ep rel ∂I, where as usual
ep : I → X is the constant path at p. Let U : I × I → X denote the homotopy.
Then U(0, 0) = p. Since U(I × I) is path connected (cf. Problem B.2) we have
U(I × I) ⊆ X ′. Thus u is nullhomotopic in X ′, and hence π1(ı) is injective. To see
π1(ı) is surjective, suppose u : I → X is a closed path at p. Then u(I) ⊆ X ′. Thus
we can pedantically define u′ : I → X ′ by u′(s) := u(s). Then clearly ı ◦ u′ = u, and
surjectivity follows.

Now let us investigate what happens when the basepoint is changed.

Proposition 4.11. Suppose X is path connected and p0, p1 ∈ X. Then any path w
from p0 to p1 induces an isomorphism

λw : π1(X, p0) ∼= π1(X, p1)

.

Proof. Define λw : π1(X, p0)→ π1(X, p1) by

λw : [v] 7→ [w̄ ∗ v ∗ w] (4.1)

(note that the multiplication takes places in the fundamental groupoid Π(X).) From
Proposition 3.18 one sees that λw is an isomorphism; the inverse is given by λw̄.

1Since a groupoid is a type of category, this is a category of categories!
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Remark 4.12. Thus provided we work with path connected spaces only, we can write
simply π1(X) to denote π1(X, p) for any p ∈ X. However should be aware that there
is no canonical isomorphism between π1(X, p0) and π1(X, p1). Thus π1(X) is really
a family of isomorphic groups. Moreover, as you will see in Problem Sheet C (cf.
Problem C.5), sometimes simply knowing two groups are isomorphic is not enough
– one really needs an explicit isomorphism.

We now discuss a subtle (and often tedious) point. To define the fundamental
group we were forced to pick a basepoint, and thus the natural category to work with
is Top∗. But “most” homotopic maps that crop up “in nature” are not pointed maps
(i.e. given two homotopic maps, it is typically too much to hope for that they just so
happen to preserve the basepoint.) Thus we need to investigate how the fundamental
group behaves under a free2 homotopy.

Proposition 4.13. Suppose f0, f1 : X → Y are continuous maps and F : f0 ' f1 is
a free homotopy from f0 to f1. Choose p ∈ X and let w denote the path in Y given
by w(t) = F (p, t). Then there is a commutative diagram:

π1(X, p) π1(Y, f0(p))

π1(Y, f1(p)),

π1(f0)

π1(f1)
λw

where λw is the isomorphism given in (4.1).

Proof. Take [u] ∈ π1(X, p). Consider the homotopy3 V : I × I → Y given by

V (s, t) :=

{
F
(
u
(
2(1− t)s

)
, 2st

)
, 0 ≤ s ≤ 1

2 ,

F
(
u
(
1 + 2t(s− 1)

)
, t+ (1− t)(2s− 1)

)
, 1

2 ≤ s ≤ 1.

Then

V (s, 0) =

{
F
(
u(2s), 0

)
, 0 ≤ s ≤ 1

2 ,

F
(
u(1), 2s− 1

)
, 1

2 ≤ s ≤ 1.

Since F (u(2s), 0) = f0(u(2s)) and F (u(1), 2s− 1) = w(2s− 1), we have

V (s, 0) = (f0 ◦ u) ∗ w(s).

Similarly

V (s, 1) =

{
F
(
u(0), 2s

)
, 0 ≤ s ≤ 1

2 ,

F
(
u(2s− 1), 1

)
, 1

2 ≤ s ≤ 1.

Since F (u(0), 2s) = w(2s) and F (u(2s− 1), 1) = f1(u(2s− 1)), we have

V (s, 1) = w ∗ (f1 ◦ u)(s).

2I will call a homotopy F : f ' g between two maps a free homotopy when it is important to emphasise
that it is not a relative homotopy.

3As ever, I encourage you to draw a picture here!
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The gluing lemma shows that V is continuous, and

V (0, t) = F (u(0), 0) = f0(p)

and
V (1, t) = F (u(1), 1) = f1(p).

Thus V is a homotopy from (f0 ◦ u) ∗ w to w ∗ (f1 ◦ u) relative to ∂I. Thus in the
fundamental groupoid Π(Y ), we have

[f0 ◦ u] ∗ [w] = [w] ∗ [f1 ◦ u],

or alternatively
[f1 ◦ u] = [w̄ ∗ (f0 ◦ u) ∗ w],

which implies that
π1(f1)[u] = λw ◦ π1(f0)[u]

as maps π1(X, p)→ π1(Y, f1(p)).

Corollary 4.14. Suppose f0, f1 : X → Y are continuous maps and F : f0 ' f1 is a
free homotopy from f0 to f1. Suppose p ∈ X has the property that f0(p) = f1(p).
Set q := f0(p). Then π1(f0) and π1(f1) are conjugate group homomorphisms, that
is, there exists [w] ∈ π1(Y, q) such that

π1(f1)[u] = [w]−1 ∗ π1(f0)[u] ∗ [w], ∀ [u] ∈ π1(X, p). (4.2)

In particular, if π1(Y, q) is abelian then π1(f0) = π1(f1).

Proof. Using the notation of Proposition 4.13, the path w is now a closed path in Y ,
and hence [w] ∈ π1(Y, q). Thus the path class [w̄ ∗ (f0 ◦ u) ∗w], which can always be
factored in the fundamental groupoid of Y can now be factored in π1(Y, q):

[w̄ ∗ (f0 ◦ u) ∗ w] = [w̄] ∗ [f0 ◦ u] ∗ [w] = [w]−1 ∗ [f0 ◦ u] ∗ [w].

Thus (4.2) follows. Finally, the last statement is immediate, since if π1(Y, q) is abelian
then we can write

[w]−1 ∗ π1(f0)[u] ∗ [w] = [w]−1 ∗ [w] ∗ π1(f0)[u] = π1(f0)[u].

We now show that for path connected spaces X and Y , having the same homotopy
type is enough to ensure that the fundamental groups π1(X, p) and π1(Y, q) coincide
for any p ∈ X and q ∈ Y . This will follow from the following result.

Proposition 4.15. Suppose f : X → Y is a homotopy equivalence. Then for any
p ∈ X the induced map π1(f) : π1(X, p)→ π1(Y, f(p)) is an isomorphism.
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Proof. Choose a continuous map g : Y → X such that g ◦f ' idX and f ◦g ' idY . If
F : g◦f ' idX is a free homotopy, let w(s) := F (p, s), so that w is a path from g(f(p))
to p. By Proposition 4.13, the lower triangle of the following diagram commutes:

π1(Y, f(p))

π1(X, p) π1(X, g(f(p)))

π1(X, p)

π1(g)π1(f)

π1(g◦f)

id λw

The top triangle also commutes because π1 is a functor. Since λw is an isomorphism,
π1(g ◦ f) is also an isomorphism. Thus π1(f) is injective and π1(g) is surjective. A
similar diagram starting from f ◦ g ' idY shows that π1(g) is injective and π1(f) is
surjective.

An immediate corollary of this result (together with the fact that a space con-
sisting of one point obviously has a trivial fundamental group) we have:

Corollary 4.16. Suppose X has the same homotopy type as a path connected space
Y . Then for all p ∈ X and q ∈ Y one has π1(X, p) ∼= π1(Y, q). If X is a contractible
space then π1(X, p) = {1} for all p ∈ X.

We conclude by giving the property of having a trivial fundamental group a name:

Definition 4.17. A topological space X is called simply connected if it is path
connected and has π1(X, p) = {1} for some (and hence all) p ∈ X.
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LECTURE 5

The fundamental group of the circle
and pushouts

We have yet to give an example of a path-connected space that is not simply con-
nected! If it turned out that every such space had trivial fundamental group then
as a mathematical tool the fundamental group would be as useful as a dead cat.
Luckily this is not the case: many spaces are not simply connected. In this lecture
we will perform our very first computation: the fundamental group of the circle S1.
At the end of the lecture we flip back into “abstract nonsense” mode and define the
notion of a pushout in a category. We will need this next lecture when we prove the
Seifert-van Kampen Theorem.

In this lecture it is convenient to regard S1 as the unit circle in C, i.e

S1 = {z ∈ C | |z| = 1}.

This is of course consistent with our previous definition under the identification of C
with R2.

Definition 5.1. Define exp: R→ S1 by

exp(s) := e2πis.

We will always take 1 as the basepoint in S1. We will use the fact that S1 is
itself a group: Given two points z = e2πis and w = e2πit in S1, their product is
z · w = e2πi(s+t), and the inverse of z is just e−2πis. We say z and w are antipodal if
z · w−1 = −1.

Proposition 5.2. Let n ≥ 0 and let X be a compact convex subset of Rn and let
p ∈ X. Suppose f : (X, p)→ (S1, 1) is a continuous map, and let m ∈ Z. Then there
exists a unique continuous map f̃ : (X, p)→ (R,m) such that exp ◦f̃ = f :

(R,m)

(X, p) (S1, 1)

exp
f̃

f

Remark 5.3. We call f̃ a lift of f . Note that the requirement that m be an integer
is forced: if f̃(p) = s then asking that exp(s) = f(p) = 1 implies that s is an integer.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Proof. Since X is a compact metric space, f is uniformly continuous, and hence there
exists ε > 0 such that if |x − y| < ε then f(x) and f(y) are not antipodal points.
Since X is bounded there exists an integer N such that |x−y| < Nε for all x, y ∈ X.
Now for each x ∈ X, subdivide the line segment with endpoints p and x (which is
contained in X by convexity) into N intervals of equal length. Call the endpoints
of these endpoints p = l0(x), l1(x), . . . , lN (x) = x. The functions li : X → X are
continuous1 and for each 0 ≤ i ≤ N − 1, the points f(li(x)) and f(li+1(x)) are not
antipodal. This means that for each 0 ≤ i ≤ N − 1, the map

gi : X → S1 \ {−1}, gi(x) = f(li(x))−1 · f(li+1(x))

is continuous (here we are using multiplication in S1 as above). Note that gi(p) = 1
for all i. Moreover since lN (x) = x for all x,

f(x) = f(p) · f(p)−1 · f(l1(x)) · f(l1(x))−1 · · · f(lN−1(x))−1 · f(lN (x))

= f(p)︸︷︷︸
=1

·g0(x) · g1(x) · · · gN−1(x). (5.1)

If we restrict the map exp to (−1
2 ,

1
2) then it is a homeomorphsim onto S1 \{−1}; let

us denote its inverse by Λ (actually Λ = 1
2πi log.) Then Λ(1) = 0. Since gi(x) 6= −1

for all x, the function Λ ◦ gi is defined and continuous. Now consider the function
f̃ : X → R given by

f̃(x) := m+
N−1∑
i=0

Λ(gi(x)).

Then f̃ is continuous, with f̃(p) = m and from (5.1) one has

exp ◦f̃ = f.

It remains to prove f̃ is unique. Suppose g̃ was another such map with exp ◦g̃ = f and
g̃(p) = m. Define h̃(x) = f̃(x)− g̃(x). Then h̃ is continuous and exp ◦h̃ is identically
equal to 1. Since exp: R → S1 is a homomorphism (thinking of both R and Z as
groups) with kernel equal to Z, the function h̃ : X → R is integer-valued. Since X is
connected (as X is convex), h̃ must be constant. Since h̃(p) = f̃(p)− g̃(p) = m−m =
0, the constant must be zero. Thus f̃ = g̃ and the proof is complete.

Corollary 5.4. Let u : I → S1 be a loop with u(0) = u(1) = 1. Then there exists a
unique lift ũ : I → R (i.e. exp ◦ũ = u) with ũ(0) = 0. Moreover if v : (I, ∂I)→ (S1, 1)
is another path with u ' v rel ∂I then if ṽ is the unique lift of v with ṽ(0) = 0 then
ũ ' ṽ rel ∂I. In particular, ũ(1) = ṽ(1).

Proof. The first statement follows from Proposition 5.2 since I is a compact convex
subset of R. To prove the second statement, suppose U : u ' v rel ∂I. Since I × I
is a compact convex subset of R2, Proposition 5.2 provides us with a unique map
Ũ : I × I → R such that exp ◦Ũ = U with Ũ(0, 0) = 0. We claim that

Ũ : ũ ' ṽ rel ∂I.

1Exercise: Check they really are continuous!
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For this first note that if ũ1(s) := Ũ(s, 0) then ũ1 is a lift of u with ũ1(0) = 0;
thus by the uniqueness part of Proposition 5.2, we must have ũ1 = ũ. Similarly
Ũ(s, 1) = ṽ(s). This shows that Ũ : ũ ' ṽ, and it remains to show that this homotopy
is a homotopy relative to ∂I.

For this consider w̃(t) := Ũ(0, t). Then exp(w̃(t)) = exp(Ũ(0, t)) = U(0, t) = 1,
and hence arguing as above we see that w̃(t) = 0 for all t. Now consider w̃1(t) :=
Ũ(1, t). Then exp ◦w̃1 = 1, and thus by uniqueness w̃1 is a constant function. The
constant is equal to Ũ(1, 0) = ũ(1) (and also to Ũ(1, 1) = ṽ(1).) This completes the
proof.

Definition 5.5. Given a loop u : (I, ∂I)→ (S1, 1), we define the degree of u to be
the integer deg(u) = ũ(1), where ũ is the unique lift of u with ũ(0) = 0.

The last statement of Corollary 5.4 tells us that deg induces a well defined map

deg : π1(S1, 1)→ Z, deg
(
[u]
)

:= deg(u),

where u is any representative of [u].
We can now prove the main result of this lecture.

Theorem 5.6. The function deg : π1(S1, 1)→ Z is an isomorphism. In particular,

deg
(
[u] ∗ [v]

)
= deg

(
[u]
)

+ deg
(
[v]
)
. (5.2)

Proof. Firstly, deg is surjective since the loop s 7→ exp(ms) has degree m (note this
is the function z 7→ zm if we think of u as a map from S1 ⊂ C to itself). Secondly,
if deg(u) = 0 then ũ is a loop in R based at 0. Now π1(R, 0) = {1} by the last
statement of Corollary 4.16. Since π1(exp) : π1(R, 0)→ π1(S1, 1) is a homomorphism
and

[u] = π1(exp)[ũ],

we thus have [u] = 1 in π1(S1, 1).
To complete the proof we will show that deg is a homomorphism from π1(S1, 1)

to Z, that is, that (5.2) holds. Then from the above its kernel is trivial, whence it
follows that deg is injective, and hence an isomorphism. So suppose u and v are loops
in S1 based at 1 of degree m and n respectively. To compute deg(u∗v), we must find
a path w̃ : I → R with exp ◦w̃ = u ∗ v. Let ũ be the unique lift of u with ũ(0) = 0,
and similarly for ṽ. Then consider the path ṽ′ : I → R given by ṽ′(s) = m + ṽ(s).
Then ṽ′ is a path from m to m + n. Then w̃ := ũ ∗ ṽ′ is a path in R with w̃(0) = 0
and w̃(1) = m+ n. Note that

exp(w̃(s)) =

{
exp

(
ũ(2s)

)
0 ≤ s ≤ 1

2 ,

exp
(
ṽ′(2s− 1)

)
, 1

2 ≤ s ≤ 1.

Since exp ◦ũ = u and since

exp
(
ṽ′(s)

)
= exp

(
m+ ṽ(s)

)
= e2πim exp(ṽ(s)) = v(s),

it follows that w̃ is a lift of u ∗ v. Since w̃(1) = m+ n, we thus have

m+ n = deg(u ∗ v) = deg(u) + deg(v)

as required. This completes the proof.
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As promised, we conclude this lecture with some more abstract nonsense that we
will need next time.

Definition 5.7. Suppose C is a category and A,B1, B2 are three objects in C, and
f1 : A → B1 and f2 : A → B2 are two morphisms. A diagram in C is a picture2 of
the form:

A B1

B2

f1

f2 (δ)

A solution to the diagram (δ) is an object C together with two morphisms g1 : B1 →
C and g2 : B2 → C such that the following diagram commutes:

A B1

B2 C

f1

f2 g1

g2

A pushout3 of the diagram (δ) is a solution (C, g1, g2) which satisfies the following
universal property: if (D,h1, h2) is any other solution to (δ) then there is a unique
morphism k : C → D such that the following diagram commutes:

A B1

B2 C

D

f1

f2 g1

h1g2

h2

k

(∆)

A pushout may or may not exist (it depends on the category C), but if it does
then it is unique up to isomorphism.

Lemma 5.8. If a pushout exists then it is unique up to isomorphism.

Proof. Suppose (C, g1, g2) and (C ′, g′1, g
′
2) are two pushouts. Then applying diagram

2In Lecture 16 we will define a more general notion of a diagram which allows for pictures of a different
shapes.

3We will generalise this in Lecture 16 when we introduce colimits.
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(∆) with D = C ′ gives a morphism k : C → C ′ such that k ◦ g1 = g′1 and k ◦ g2 = g′2:

A B1

B2 C

C ′

f1

f2 g1

g′1g2

g′2

k

Reversing the roles of C and C ′ gives another morphism k′ : C ′ → C such that
k′ ◦ g′1 = g1 and k′ ◦ g′2 = g2. To complete the proof we claim that k′ ◦ k = idC and
k ◦ k′ = idC′ . For this, first note that

k′ ◦ k ◦ g1 = k′ ◦ g′1 = g1, (5.3)

and similarly
k′ ◦ k ◦ g2 = k′ ◦ g′2 = g2. (5.4)

Now take D = C: then the universal property means there is a unique map l : C → C
such that the following commutes:

A B1

B2 C

C

f1

f2 g1

g1g2

g2

l

By (5.3) and (5.4) taking l = k′◦k makes this diagram commute: hence by uniqueness
this must be the map l:

l = k′ ◦ k.
But of course there is another map that also works: take l = idC ! By uniqueness, it
thus follows that

k′ ◦ k = idC .

Now, repeating this but with C ′ in both the two bottom right slots shows that
k ◦ k′ = idC′ . The proof is complete.

Remark 5.9. Morally (we shall see many other examples of this throughout the
course), whenever something is defined via a universal property4 then uniqueness
comes “for free”. However, one still always needs to prove existence.

4Before you ask: Yes, it is possible to give a formal definition of exactly what a “universal property” is,
but I’m not going to do so since it requires more category theory than one should use in polite company.
Instead, just think of a universal property as meaning “making a diagram commute in the most efficient
manner possible”.
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LECTURE 6

The Seifert-van Kampen Theorem

In this lecture we prove our first genuinely difficult result, called the Seifert-van
Kampen Theorem. Roughly speaking, the Seifert-van Kampen Theorem allows us to
“decompose” a topological space into smaller pieces, and compute the fundamental
group of the full space in terms of the fundamental groups of the smaller pieces.

Let us begin by proving that in the category Groups, a pushout always exists.

Definition 6.1. Let G and H be groups (not necessarily abelian). A word of length
n in G and H is an expression of the form

s1s2 · · · sn

where each si belongs to either G or H. A word can be reduced in two different
ways:

1. If any si is equal to the identity element 1G or 1H , remove it.

2. If two consecutive elements si and si+1 both belong to G (or both belong to
H), then replace them by their product si · si+1 as a single element of G (or
H). This produces a word of length n− 1.

After performing these operations as many times as possible, the word is necessarily
an alternating product

g1h1g2h2 · · · gmhm,

where gi ∈ G and hi ∈ H, and only g1 or hm is allowed to be the identity element.
Such a word is then called a reduced word. The free product of G and H, written
G ∗H, is the group whose elements are reduced words, and the product is given by
concatenating followed by reduction.

In Problem Sheet C, you will show that the free product can also be characterised
by a universal property.

Proposition 6.2. The pushout exists for the diagram (δ) in Groups. Indeed, suppose
we are given groups G,H1, H2 and group homomorphisms φ1, φ2 as in diagram (δ):

G H1

H2

φ1

φ2

Let N denote the normal subgroup of the free product H1 ∗ H2 generated by all
elements of the form φ1(g−1) · φ2(g) for g ∈ G. Then the quotient group K :=
(H1 ∗H2)/N is a pushout.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Proof. Define ψi : Hi → K by ψi(hi) = hi ·N . We claim that (K,ψ1, ψ2) is a solution,
i.e. the following commutes:

G H1

H2 K

φ1

φ2 ψ1

ψ2

For this, we must show that for all g ∈ G, as cosets in K, one has

φ1(g) ·N = φ2(g) ·N,

or equivalently that
φ1(g)−1 · φ2(g) ·N = N.

Since φ1 is a homomorphism,

φ1(g)−1 = φ1(g−1).

Since φ1(g−1) · φ2(g) ∈ N for all g ∈ G, the claim follows. Now suppose (F, θ1, θ2)
is another solution. The definition of the free product provides a unique homomor-
phism1

µ : H1 ∗H2 → F

such that µ|Hi = θi. Since θ2 ◦ φ2 = θ1 ◦ φ1, it follows that N ≤ kerµ, and hence µ
induces a unique homomorphism µ̄ : K → F such that the diagram (∆) commutes:

G H1

H2 K

F

φ1

φ2 ψ1

θ1ψ2

θ2

µ̄

Thus K is a pushout, as claimed.

Definition 6.3. We call the group K the free product with amalgamation of
φ1 : G → H1 and φ2 : G → H2 and write K = H1 ∗G H2. This notation is a little
imprecise, since K depends on the homomorphisms φ1 and φ2.

Corollary 6.4. If H2 = {1} is the trivial group then the free product with amal-
gamation is given by H1/N , where N is the normal subgroup generated by φ1(G).

With these group-theoretic preliminaries out of the way, we can finally state the
main result of today’s lecture.

1If you are confused exactly how µ is defined, I invite you to look at Problem C.1.
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Theorem 6.5 (The Seifert-van Kampen Theorem). Let X = X1 ∪X2 with X1 and
X2 open subsets. Assume X1, X2 and X0 := X1 ∩ X2 are all non-empty and path
connected. Let

ıi : X0 ↪→ Xi, i : Xi ↪→ X

denote inclusions for i = 1, 2. Let p ∈ X0. Then the fundamental group π1(X, p) is
the free product with amalgamation of the group homomorphisms π1(ı1) : π1(X0, p)→
π1(X1, p) and π1(ı2) : π1(X0, p)→ π1(X2, p):

π1(X, p) ∼= π1(X1, p) ∗π1(X0,p) π1(X2, p).

Before giving the proof, let us note three useful special cases of Theorem 6.5.

Corollary 6.6. Under the assumptions of Theorem 6.5, one has:

1. If X2 is simply connected then

π1(1) : π1(X1, p)→ π1(X, p)

is a surjection with kernel the normal subgroup generated by π1(ı1)
(
π1(X0, p)

)
.

2. If X0 is simply connected then π1(X, p) is the free product of π1(X1, p) and
π1(X2, p).

3. If X2 and X0 are simply connected then

π1(1) : π1(X1, p)→ π1(X, p)

is an isomorphism.

We will need the following piece of point-set topology in the course of the proof
of Theorem 6.5.

Lemma 6.7 (The Lebesgue Number Lemma2). Let (X, d) be a compact metric space.
Suppose U is an open cover of X. Then there exists δ > 0, called a Lebesgue
number for U such that every subset A of X with diameter less than δ is contained
in some element of U .

Proof of Theorem 6.5. Consider the diagram:

π1(X0, p) π1(X1, p)

π1(X2, p)

π1(ı1)

π1(ı2)

We will show that (π1(X, p), π1(1), π1(2)) is a pushout. Since we already know that
a pushout is unique by Lemma 5.8, and since in Groups the pushout is given by the

2See here for a proof.
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free product with amalgamation by Proposition 6.2, it thus follows that π1(X, p)
must be this product:

π1(X, p) ∼= π1(X1, p) ∗π1(X0,p) π1(X2, p).

It is clear that (π1(X, p), π1(1), π1(2)) is a solution, i.e. that the following commutes:

π1(X0, p) π1(X1, p)

π1(X2, p) π1(X, p)

π1(ı1)

π1(ı2) π1(1)

π1(2)

So suppose (G,φ1, φ2) is another solution:

π1(X0, p) π1(X1, p)

π1(X2, p) G

π1(ı1)

π1(ı2) φ1

φ2

(6.1)

We will construct a unique homomorphism ψ : π1(X, p)→ G such that the following
diagram commutes.

π1(X0, p) π1(X1, p)

π1(X2, p) π1(X, p)

G

π1(ı1)

π1(ı2) π1(1)

φ1π1(2)

φ2

ψ

(6.2)

Suppose u is a loop in X at p. Since X1 and X2 are open, we can find a finite set of
points p = x0, x1, . . . , xn = p along u with the property that each xi lies in X0 and
each segment of u from xi−1 to xi lies in either X1 or X2. Let vi : I → X denote the
path obtained by reparametrising the segment of ui from xi−1 to xi. Explicitly, if
si−1 < si are such that u(si−1) = xi−1 and u(si) = xi, then

vi(s) = u
(
(1− s)si−1 + s si

)
.

Now, for each i, select a path wi in X0 from p to xi (take w0 and wn to be the
constant path ep.) Then by concatenating we obtain loops

wi−1 ∗ vi ∗ w̄i

which lies entirely in either X1 or X2. See Figure 6.1. Each loop therefore defines an
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Figure 6.1: Breaking u into smaller pieces.

element either of π1(X1, p) or π1(X2, p). Note that

u '
n∏
i=1

(
wi−1 ∗ vi ∗ w̄i

)
, rel ∂I. (6.3)

We now define our desired map ψ by

ψ[u] := φ∗[w0 ∗ v1 ∗ w̄1] · φ∗[w1 ∗ v2 ∗ w̄2] · · ·φ∗[wn−1 ∗ vn ∗ w̄n],

where φ∗ means either φ1 or φ2 depending on whether [wi−1 ∗ vi ∗ w̄i] belongs to
π1(X1, p) or π1(X2, p). Note that there is a potential ambiguity if wi−1 ∗ vi ∗ w̄i
lies in both X1 and X2, because we could choose either φ1 or φ2. But in this case
[wi−1 ∗ vi ∗ w̄i] lies in π1(X0, p), and commutativity of the diagram (6.1) shows that
we get the same result.

This defines the map ψ, but there are still many things we need to check before
the proof is complete:

1. Is the definition of ψ independent of the points xi and the paths wi?

2. Does ψ make sense on π1(X, p)? That is, if u1 and u2 are two homotopic loops
rel p do we get the same answer if we use u1 and u2 in the definition of ψ?

3. Is ψ a homomorphism?

4. Does the diagram (6.2) commute?

5. Is ψ unique with respect to these properties?

Let’s pretend for a second that we’ve already proved (1) and (2). The last three
properties are then easy: (3) and (4) follow by construction, and uniqueness comes
from the fact that if a loop v is entirely contained in X1 then requiring (6.2) to
commutes means we are forced to define ψ[v] = φ1[v] (and similarly for X2), and
thus (6.3) means that if we want ψ to be a group homomorphism we have no choice
but to define it as we have done.
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So now let’s get on with proving the first two parts, starting with (1). Consider a
point xi, and suppose w′i is another path from p to xi. See Figure 6.2. Then we have

Figure 6.2: wi and w′i.

φ∗[wi ∗ vi+1 ∗ w̄i+1] = φ∗[wi ∗ w̄′i ∗w′i ∗ vi+1 ∗ w̄i+1] = φ∗[wi ∗ w̄′i] · φ∗[w′i ∗ vi+1 ∗ w̄i+1].

On the other hand,

φ∗[wi−1 ∗ vi ∗ w̄i] = φ∗[wi−1 ∗ vi ∗ w̄′i ∗ w′i ∗ w̄i]
= φ∗[wi−1 ∗ vi ∗ w̄′i] · φ∗[w′i ∗ w̄i]

= φ∗[wi−1 ∗ vi ∗ w̄′i] ·
(
φ∗[wi ∗ w̄′i]

)−1

Since w̄i ∗w′i is a loop based in X0 and since the diagram (6.1) commutes, the value
of φ∗ on this loop will be the same whether φ∗ is φ1 or φ2. Thus

φ∗[wi−1 ∗ vi ∗ w̄i] · φ∗[wi ∗ vi+1 ∗ w̄i+1] = φ∗[wi−1 ∗ vi ∗ w̄′i] · φ∗[w′i ∗ vi+1 ∗ w̄i+1]

This means that the product won’t change when w′i is used instead of wi. Repeating
this argument at each point xi shows that ψ[u] does not depend on the choice of the
paths wi.

Now we show independence of the points xi. Suppose another point y ∈ X0 is
added along vi separating the path vi into two new paths v′i and v′i−1. See Figure
6.3. Let w′ denote a path from p to y in X0. Suppose for definiteness that the
loop wi−1 ∗ vi ∗ w̄i is contained in X1. Then the same is true of the two new loops
wi−1 ∗ v′i−1 ∗ w̄′ and w′ ∗ v′i ∗ w̄i, and we have

φ1[wi−1 ∗ v′i−1 ∗ w̄′] · φ1[w′ ∗ v′i ∗ w̄i] = φ1[wi−1 ∗ v′i−1 ∗ w̄′ ∗ w′ ∗ v′i ∗ w̄i]
= φ1[wi−1 ∗ vi ∗ w̄i].

This shows that adding an additional point to the set of {xi} does not change the
value of ψ[u]. More generally, the same is true if we add a finite number of points,
that is, refining the {xi} leads to the same result. Now suppose we are given two
different sets {xi} and {yi} of points. Their union is a common refinement of both
the {xi} and the {yi}, and we have just shown that the value of ψ[u] doesn’t change
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Figure 6.3: The new point y.

when refining the set of points. Thus the value of ψ[u] is the same if we use either
the {xi} or the {yi}. This proves (1).

Now let us move onto the proof of (2). Suppose u and u′ are two homotopic loops
and U : u ' u′ is a homotopy rel ∂I. We subdivide the square I × I into lots of
little squares in such a way that each smaller square is mapped by U into either X1

or X2. Such a decomposition exists by Lemma 6.7, where we take the open cover
of I × I given by the connected components of U−1(X1) and U−1(X2). See Figure
6.4. Proceeding one small rectangle at a time, this deforms u into u′ through a finite

Figure 6.4: Subdividing I × I.

sequence of paths such that each step involves a homotopy in which the only change
occurs within either X1 or X2. For such a restricted deformation, the points {xi}may
be chosen so that the value of ψ is unchanged. This proves (2), and thus completes
the proof.
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LECTURE 7

Singular homology

In this lecture we finally get started on defining the homology functors Hn referred
to in Lecture 1. Let us begin with some preliminaries on free abelian groups.

Definition 7.1. Let B be a subset of an abelian group F . We say F is free abelian
with basis B if the subgroup generated by b is infinite cyclic for each b ∈ B and
F =

⊕
b∈B〈b〉 as a direct sum.

Thus a free abelian group is a (possibly uncountable) direct sum of copies of Z.
A typical element x ∈ F has a unique expression

x =
∑
b∈B

mb b, mb ∈ Z

where almost all (meaning all but a finite number) of the mb are zero. The following
trivial lemma will be crucial in all that follows.

Lemma 7.2. Let F be a free abelian group with basis B. If A is an abelian group and
φ : B → A is a function then there exists a unique group homomorphism φ̃ : F → A
such that

φ̃(b) = φ(b), ∀ b ∈ B,

that is, the following diagram commutes:

F

B A

φ̃

φ

Moreover any abelian group A is isomorphic to a quotient group of the form F/R,
where F is a free abelian group.

Proof. Define φ̃ by

φ̃

(∑
b∈B

mb b

)
:=
∑
b∈B

mb φ(b).

Then φ̃ is well-defined since any element of F has a unique expression of this form, and
it is obviously a homomorphism. Moreover φ̃ is unique since any two homomorphisms
that agree on a set of generators (in this case B) must coincide. The last statement
is on Problem Sheet D.
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We refer to the extension φ 7→ φ̃ given in Lemma 7.2 as extending by linearity.
By an abuse of notation, we will typically continue to write φ for the extension, rather
than φ̃.

Lemma 7.3. Given any set B, there exists a free abelian group having B as basis.

Proof. If B = ∅, take F = 0. Otherwise, for each b ∈ B, let Zb be a group whose
elements are all symbols mb with m ∈ Z and addition defined by mb+nb = (m+n)b.
Then Zb is infinite cyclic with generator b. Now set

F :=
⊕
b∈B

Zb.

This is a free abelian group with basis given by the set {eb | b ∈ B}, where eb has a
zero in each entry apart from the bth entry, where it is a 1. Identifying eb with b, we
see that F has basis B.

Definition 7.4. The rank of a free abelian group F is the cardinality of any basis
of B of F .

This is well-defined thanks to Problem D.1. Moreover two free abelian groups are
isomorphic if and only if they have the same rank.

Remark 7.5. One can extend the notion of rank to any abelian group: if G is an
arbitrary abelian group then we say G has (possibly infinite) rank r if there exists
a free abelian subgroup F of G such that F has rank r and G/F is torsion. Such
subgroups F always exist (this is also part of Problem D.1). However it is not obvious
that this definition is well-defined. Indeed, F is not unique, and it is by no means
clear that the rank of F only depends on G. At the very end of the course we will
develop one way of proving this.

Now let us define the notion of a simplex.

Definition 7.6. An ordered tuple (z0, z1, . . . , zn) of points in Rm is said to be
affinely independent if the set {z1−z0, z2−z0, . . . , zn−z0} is linearly independent
(thus necessarily n ≤ m). Given an affinely independent tuple (z0, z1, . . . , zn) of vec-
tors in Rm, we denote by [z0, z1, . . . , zn] the n-simplex spanned by (z0, z1, . . . , zn),
namely the set

[z0, z1, . . . , zn] :=

{
x ∈ Rm | x =

n∑
i=0

si zi, where 0 ≤ si ≤ 1,

n∑
i=0

si = 1

}
.

We call the points zi the vertices of the n-simplex [z0, z1, . . . , zn]. The expression
x =

∑n
i=0 si zi of any point x ∈ [z0, z1, . . . , zn] is unique1. We call the (n + 1)-

tuple (s0, s1, . . . , sm) the barycentric coordinates of x. The barycentre of the
n-simplex [z0, z1, . . . , zn] is the unique point where all the si are equal, namely

1

n+ 1
(z0 + z1 + · · ·+ zn). (7.1)

1Exercise: Why?
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Definition 7.7. Let [z0, z1, . . . , zn] be an n-simplex. The face opposite to zi
is the (n − 1)-simplex2 [z0, . . . ẑi, . . . , zn]. Here the circumflex ˆ means3 “delete”.
Equivalently

[z0, . . . ẑi, . . . , zn] := {x ∈ [z0, z1, . . . , zn] | si = 0.} .

An n-simplex thus has n + 1 faces. The boundary of an n-simplex is the union of
its faces.

Definition 7.8. The standard n-simplex in Rn+1 is the n-simplex [e0, e1, . . . , en],
where ei is the vector coordinates are all zero, apart from the i+ 1st position, which
is 1. We denote the standard n-simplex by ∆n.

So much for a simplex in Rn+1. What about in an arbitrary topological space X?

Definition 7.9. Let X be a topological space. A singular n-simplex in X is a
continuous map σ : ∆n → X.

Since ∆0 is a point, a 0-simplex in X is simply a point in X. Since ∆1 is a closed
interval, a 1-simplex is4 the same thing as a path in X. The adjective “singular” is
added to emphasis that the image σ(∆n) does not need to “look” anything like ∆n,
i.e. we do not require σ to be a homeomorphism. In particular, there is nothing
stopping σ being a constant map.

Definition 7.10. Let X be a topological space and n ≥ 0. Let Cn(X) denote the
free abelian group with basis the singular n-simplices in X (cf. Lemma 7.3.) We call
an element of Cn(X) a singular n-chain. It is convenient for notational reasons to
also define C−1(X) = 0.

Note that (as a group), Cn(X) is typically huge: if X is an uncountable set then
Cn(X) is itself uncountable for all n ≥ 0. We will shortly replace Cn(X) with a
(usually smaller) abelian group Hn(X). First, let us explain how to obtain a singular
(n− 1)-simplex from a singular n-simplex.

Definition 7.11. Let σ : ∆n → X be a singular n-simplex in X. If we restrict σ to
one of the faces of ∆n, we get a continuous map from an n− 1-simplex into X.

Actually this definition is cheating a little bit; whilst any face of ∆n is an (n−1)-
simplex, it is not the standard (n − 1)-simplex, since the domain is wrong. Thus
strictly speaking, the restriction of a n-simplex σ in X to a face is not actually a
singular (n − 1)-simplex in X, since it is not a continuous map from ∆n−1 into X.
There are two ways round this tedious pedantry:

1. Ignore it. After all, it’s clear what we mean.

2. Fix it by making the notation more complicated.

2This is clearly an (n−1)-simplex as a subset of a linearly independent set is also linearly independent.
3This is a convention we will use throughout the course.
4Not quite! We will come back to this in Lecture 9.
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We shall go5 for option (2). To this end, let us define the ith face map

εi : ∆n−1 → ∆n, i = 0, 1, . . . , n

that maps the standard (n− 1)-simplex ∆n−1 homeomorphically onto the ith face of
∆n. Explicitly,

ε0(s0, s1, . . . , sn−1) = (0, s0, s1, . . . , sn−1),

for i = 0, and for 1 ≤ i ≤ n− 1,

εi(s0, s1, . . . , sn−1) = (s0, s1, . . . , si−1, 0, si, . . . , sn−1),

and finally
εn(s0, s1, . . . , sn−1) = (s0, s1, . . . , sn−1, 0).

Where necessary we will write εni : ∆n−1 → ∆n (this is needed for instance in (7.2)
below).

We can now “improve” Definition 7.11:

Definition 7.12. Let σ : ∆n → X be a singular n-simplex in X and let 0 ≤ i ≤ n.
The composition σ ◦ εi : ∆n−1 → X is then a singular (n − 1)-simplex in X, which
we call the restriction of σ to the ith face.

We can now define the boundary of a singular n-simplex.

Definition 7.13. Let σ : ∆n → X be a singular n-simplex in X. The boundary of
σ is the alternating sum of the restriction of σ to the faces:

∂σ :=

n∑
i=0

(−1)iσ ◦ εi.

Thus the boundary of σ is not a singular (n − 1)-simplex, but rather a formal sum
of singular (n − 1)-simplices, and hence (by definition) a singular (n − 1)-chain:
∂σ ∈ Cn−1(X). We define the boundary of a singular 0-simplex to be zero.

Remark 7.14. If we omit the face maps (which we will occasionally do, cf. in
Proposition 8.5 next lecture), the formula is slightly more intuitive (albeit formally
incorrect):

∂σ =

n∑
i=0

(−1)iσ|[e0,...,êi,...,en].

Applying Lemma 7.2 we obtain a well defined map on the free abelian group
Cn(X).

5Being pedantic is an important quality for a mathematician to have (or at least, to pretend to have
when teaching others ...)
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Definition 7.15. The singular boundary operator

∂ : Cn(X)→ Cn−1(X)

is the unique homomorphism extending the operator from Definition 7.13. Occasion-
ally for clarity we will write ∂n : Cn(X)→ Cn−1(X).

Thus for each n ≥ 0 we have constructed a sequence of free abelian groups and
homomorphisms. We illustrate this pictorially as

· · · Cn(X) Cn−1(X) · · · C1(X) C0(X) 0.∂ ∂

Anticipating the category Comp of chain complexes that we will introduce in Lecture
10, we will bundle all the groups Cn(X) together and write (C•(X), ∂) to denote all
the groups and maps at once.

Proposition 7.16. ∂2 = 0, that is, for any n ≥ 0 the composition

Cn+1(X) Cn(X) Cn−1(X)∂ ∂

is always zero.

Proof. Since Cn+1(X) is generated by all the (n + 1)-simplices, by Lemma 7.2 it
suffices to show that if σ : ∆n+1 → X is a singular (n+ 1)-simplex then ∂2σ = 0. As
you can probably guess, the point it that since the boundary operator was defined
via an alternating sum, when you apply it twice things cancel. Indeed, if k < j then
one has the following face relation:

εn+1
j ◦ εnk = εn+1

k ◦ εnj−1 : ∆n−1 → ∆n+1. (7.2)

To prove (7.2), it suffices to observe that both sides give the same answer when fed
a vertex ei for i = 0, 1, . . . , n− 1. Now we compute:

∂2σ = ∂

n+1∑
j=0

(−1)jσ ◦ εn+1
j


=

n∑
k=0

n+1∑
j=0

(−1)j+kσ ◦ εn+1
j ◦ εnk

=
∑
j≤k

(−1)j+kσ ◦ εn+1
j ◦ εnk︸ ︷︷ ︸

(∗)

+
∑
k<j

(−1)j+kσ ◦ εn+1
j ◦ εnk︸ ︷︷ ︸

(†)

.

We claim that the two terms (∗) and (†) cancel. Indeed, to see this first apply (7.2)
to (∗∗) and change variables by setting l = k and m = j − 1 to obtain:∑
k<j

(−1)j+kσ ◦ εn+1
j ◦ εnk =

∑
k<j

(−1)j+kσ ◦ εn+1
k ◦ εnj−1 =

∑
l≤m

(−1)l+m+1σ ◦ εn+1
l ◦ εnm.

The last expression is the same as (∗), only every term appears with the opposite
sign. This completes the proof.
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Definition 7.17. A singular n-cycle in X is a singular n-chain that lies in the
kernel of ∂. We denote by Zn(X) the set of all singular n-cycles. A singular n-
boundary in X is a singular n-chain that lies in the image of ∂. We denote by
Bn(X) the set of all singular n-boundaries6. Both Zn(X) and Bn(X) are subgroups
of Cn(X). Moreover since ∂2 = 0, we have

Bn(X) ⊆ Zn(X) ⊆ Cn(X).

We can therefore form the quotient group. This will be the eponymous singular
homology.

Definition 7.18. We define the n-singular homology group of X, written Hn(X),
to be the quotient group

Hn(X) = Zn(X)
/
Bn(X).

Thus Hn(X) is an abelian (not free abelian!) group for each n. Given a singular
n-cycle c, we denote7 by 〈c〉 the coset c+Bn(X) ∈ Hn(X) and call 〈c〉 the homology
class determined by c.

We will conclude this lecture by showing that Hn is a functor. This means
that we need to associate to each continuous map f : X → Y a homomorphism
Hn(f) : Hn(X)→ Hn(Y ).

Definition 7.19. If f : X → Y is a continuous map and σ : ∆n → X is a singular
n-simplex in X then f ◦σ : ∆n → Y is a singular n-simplex in Y . We therefore obtain
an induced map f# : Cn(X)→ Cn(Y ) by extending this by linearity (Lemma 7.2:

f#

(∑
mσ σ

)
:=
∑

mσf ◦ σ.

We can think of f# as defining being a map f# : C•(X) → C•(X). You will not
be surprised to learn that the operation X 7→ C•(X) and f 7→ f# defines a functor8.
We will study this in Lecture 10 (it’s a functor Top → Comp.) For now though, let
us prove that f# descends to the quotient to define a map on Hn(X)→ Hn(Y ). This
is the content of the following proposition.

Proposition 7.20. If f : X → Y is continuous, then the following diagrams com-
mutes for every n:

Cn(X) Cn−1(X)

Cn(Y ) Cn−1(Y )

∂

f# f#

∂

6Boundary begins with a “b”, hence the notation Bn(X). Similarly cycle begins with a “c”, hence the
notation ... wait a second ... Damnit, we already used Cn(X) for the chain groups! Next best option:
Zykel begins with a “z” ...

7We use angle brackets 〈·〉 rather than square brackets [·] to distinguish between homotopy and ho-
mology classes.

8It would be more logical to write C•(f) instead of f#, but this is too messy.
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Proof. It suffice to evaluate both f# ◦ ∂ and ∂ ◦ f# on a singular n-simplex σ in X.
Now

f# ◦ ∂σ = f#

(
n∑
i=0

(−1)iσ ◦ εi

)
=

n∑
i=0

(−1)if ◦ σ ◦ εi.

Similarly

∂ ◦ f#σ = ∂(f ◦ σ) =

n∑
i=0

(−1)if ◦ σ ◦ εi.

Corollary 7.21. If f : X → Y is continuous then both f#(Zn(X)) ⊆ Zn(Y ) and
f#(Bn(X)) ⊆ Bn(Y ). Thus f# induces a map Hn(f) : Hn(X)→ Hn(Y ).

Proof. If ∂c = 0 then ∂(f#c) = f#(∂c) = 0, so that f#c ∈ Zn(Y ). Similarly if b = ∂c
then f#b = f#(∂c) = ∂(f#c), so that f#b ∈ Bn(Y ).

Thus f# induces a map Hn(f) : Hn(X)→ Hn(Y ), given by

Hn(f)〈c〉 := 〈f#c〉.

Corollary 7.22. For each n ≥ 0, Hn : Top→ Ab is a functor.

Proof. We need only check that Hn(g ◦ f) = Hn(g) ◦ Hn(f) and that Hn(idX) =
idHn(X). Both of these are immediate from the definitions.

Corollary 7.23. If X and Y are homeomorphic then Hn(X) ∼= Hn(Y ) for all n ≥ 0.

Proof. Immediate from Problem A.2.

Thinking back to Lecture 1, we have now constructed the singular homology
functors from Theorem 1.15. In order for our proof of the Brouwer Fixed Point
Theorem 1.1 to be complete, we need to verify that Hn(Bn+1) = 0 and Hn(Sn) 6= 0.
We will prove that Hn(Bn+1) = 0 next lecture; the fact that Hn(Sn) 6= 0 will take
much longer (Lecture 15).
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LECTURE 8

The homotopy axiom

In this lecture we prove that if f, g : X → Y are homotopic maps then the induced
maps Hn(f) and Hn(g) coincide for every n ≥ 0:

[f ] = [g] ⇒ Hn(f) = Hn(g) ∀n ≥ 0. (8.1)

we will prove this in Theorem 8.9 below. By Problem A.2, this means that Hn may
be regarded as a functor Hn : hTop → Ab. This should be compared to π1: we ini-
tially defined π1 as a functor Top∗ → Groups and then later showed that π1 induces
a functor from hTop∗ to Groups. The property (8.1) is usually called the homotopy
axiom. This terminology will be explained at the end of the course when we cover
the Eilenberg-Steenrod axioms.

We begin by stating two elementary properties of singular homology, both of
which appear on Problem Sheet D.

Proposition 8.1 (The dimension axiom). Let X be a one-point space {∗}. Then
Hn(X) = 0 for all n > 0.

Just as with the homotopy axiom (8.1), the meaning of the name “dimension
axiom” in Proposition 8.1 will get explained later. For the next result, let us recall
that if {Gλ | λ ∈ Λ} is a collection of groups, an element of

⊕
λ∈ΛGλ is a tuple (gλ)

where all but finitely many of the gλ are equal to the identity.

Proposition 8.2. Let X be a topological space. Let {Xλ | λ ∈ Λ} denote the path
components of X. Then for every n ≥ 0 one has

Hn(X) ∼=
⊕
λ∈Λ

Hn(Xλ).

Thus, just as with the fundamental group, for computational purposes we may
always assume our spaces are path connected. In general, it is very hard to compute
Hn(X) for n > 0, but it is always possible to compute H0(X).

Proposition 8.3. If X is a non-empty path connected space then H0(X) = Z. A
generator is given by 〈x〉 for any point x ∈ X, and if x, y ∈ X then 〈x〉 = 〈y〉.
Moreover, if 〈c〉 is any generator then 〈c〉 = 〈x〉 for some (and hence every) x ∈ X.

Proof. We identify a 0-singular simplex in X with a point in X. Since ∂ : C0(X)→ 0
is the zero map, every point in X is a 0-cycle: Z0(X) = C0(X). Thus each point
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x ∈ X determines a class 〈x〉 ∈ H0(X). Let us now identify B0(X). A typical
element of c ∈ C0(X) is of the form

c =
∑
x∈X

mx x, mx ∈ Z,

where all but finitely many of the mx are equal to zero. We claim that:

B0(X) =
{∑

mx x |
∑

mx = 0
}
. (8.2)

Firstly, suppose c =
∑n

i=1mi xi satisfies
∑n

i=1mi = 0. We wish to build a singular 1-
chain a such that ∂a = c. For this, choose a point p ∈ X and for each i = 1, . . . , n, let
ui : I → X denote a path starting at p and ending at xi. After identifying I = [0, 1]
with ∆1 = [e0, e1], we may regard each ui as a singular 1-simplex σi : ∆1 → X such
that σi(e0) = p and σi(e1) = xi. Note that

∂σi = σi(e1)− σi(e0) = xi − p ∈ C0(X).

Now set a :=
∑n

i=1miσi. Then

∂a = ∂

(
n∑
i=1

mi σi

)

=
n∑
i=1

mi ∂σi

=
n∑
i=1

mixi −

(
n∑
i=1

mi

)
p

= c− 0 = c.

Conversely, suppose d ∈ B0(X). Then there exists b ∈ C1(X) such that ∂b = d.
Write b =

∑k
j=1 lj τj , where τj : ∆1 → X and li ∈ Z. Then

d =

k∑
j=1

lj
(
τj(e1)− τj(e0)

)
.

Thus in the expansion of d, each coefficient lj appears twice and with the opposite
sign. Thus the sum of the coefficients of d is zero. This proves (8.2).

Thus by (8.2), the map

φ : Z0(X) = C0(X)→ Z, φ

(∑
x∈X

mx x

)
:=
∑
x∈X

mx (8.3)

is a surjection whose kernel is precisely B0(X). Thus H0(X) ∼= imφ = Z.
Now suppose x, y ∈ X. A path from x to y determines a singular 1-simplex σ

with ∂σ = y−x. Thus 〈x〉 = 〈y〉 ∈ H0(X). Finally suppose a =
∑

imi xi is a 0-cycle
such that 〈a〉 is a generator of H0(X). Then we must have φ(a) = ±1. Replacing a
with −a if necessary, we may assume that φ(a) = 1. Thus

∑
imi = 1. Then for any

point x ∈ X, we have a = x + (a − x). Since a − x ∈ B0(X) by (8.2) we therefore
have 〈x〉 = 〈a〉. This completes the proof.

2



An immediate corollary of Proposition 8.3 is:

Corollary 8.4. Let X and Y be path connected spaces and f : X → Y continuous.
Then H0(f) : H0(X)→ H0(Y ) maps a generator of H0(X) to a generator of H0(Y ).

The main step in the proof of the homotopy axiom is the following innocuous
looking statement.

Proposition 8.5. Let X be a topological space and define inclusions ı,  : X ↪→ X×I
by

ı(x) := (x, 0), (x) := (x, 1).

Then
Hn(ı) = Hn(), ∀n ≥ 0.

Remark 8.6. There is a very cute three line proof which uses an abstract result in
homological algebra called the Acyclic Models Theorem. We will prove this right
at the end of the course, and we will then come back to Proposition 8.5 and give a
second proof. Therefore don’t worry if you find the proof of Proposition 8.5 below
horrible; we will eventually see a nicer one.

In order to prove Proposition 8.5 we introduce the idea of a chain homotopy.

Lemma 8.7. Let f, g : X → Y be continuous maps. Assume for each1 n ≥ −1 there
is a homomorphism

P : Cn(X)→ Cn+1(Y )

with
f# − g# = ∂P + P∂.

Then Hn(f) = Hn(g) for all n ≥ 0.

The maps Pn look like this:

. . . Cn+1(X) Cn(X) Cn−1(X) . . .

. . . Cn+1(Y ) Cn(Y ) Cn−1(Y ) . . .

∂ ∂

P P

∂ ∂

Beware though, this diagram is not commutative! Just as with the ∂ maps, sometimes
for clarity we will include the subscript and write Pn : Cn(X)→ Cn+1(Y ). In Lecture
10 we will define an abstract version of the operators P , which will then be called
chain homotopies.

Proof. Take c ∈ Zn(X). Then

(f# − g#)c = (∂P + P∂)c = ∂Pc ∈ Bn(Y ).

Thus Hn(f)〈c〉 = Hn(g)〈c〉.
1The map P−1 : 0 = C−1(X)→ C0(Y ) is necessarily the zero map.
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Let us now prove Proposition 8.5. The first step is the following lemma.

Lemma 8.8. ∆n × I is the union of n+ 1 copies of ∆n+1.

Proof. For i = −1, 0, 1, . . . , n− 1, let gi : ∆n → I denote the map

gi(s0, s1, . . . , sn) =
∑
j>i

sj .

Note gi is indeed a map to I, as x =
∑
si ei implies

∑
si = 1. Let Gi ⊂ ∆n×I denote

the graph of gi. Then Gi is homeomorphic to ∆n via the projection ∆n × I → ∆n

onto the first factor. Let us now label the vertices at the “bottom” (i.e. ∆n × {0})
of ∆n × I by e′0, e

′
1, . . . , e

′
n and those at the “top” by e′′0, e

′′
1, . . . , e

′′
n. Then Gi is the

n-simplex
Gi = [e′0, . . . , e

′
i, e
′′
i+1, . . . , e

′′
n].

Since Gi lies below Gi−1 as gi ≤ gi−1, it follows that the region between Gi and
Gi−1 is the (n + 1)-simplex [e′0, . . . , e

′
i, e
′′
i , . . . , e

′′
n]; this is indeed an (n + 1)-simplex

as e′′i is not in Gi and hence not in the n-simplex [e′0, . . . , e
′
i, e
′′
i+1, . . . , e

′′
n]. Since

0 = gn ≤ gn−1 ≤ · · · ≤ g0 ≤ g−1 = 1, we see that ∆n × I is the union of the
regions between the Gi, and hence the union of n + 1 different (n + 1)-simplices
[e′0, . . . , e

′
i, e
′′
i , . . . , e

′′
n], each intersecting the next in an n-simplex face.

We now prove Proposition 8.5.

Proof of Proposition 8.5. We will break with our convention here since otherwise the
notation becomes too messy. If σ : ∆n → X is a singular n-simplex, then we denote
by

(σ × idI)|[e′0,...,e′i,e′′i ,...,e′′n]

the singular (n + 1)-simplex obtained from the previous lemma by restricting σ ×
idI : ∆n×I → X×I to the (n+1)-simplex [e′0, . . . , e

′
i, e
′′
i , . . . , e

′′
n]. Of course, we should

really precompose with an appropriate face map ∆n+1 → [e′0, . . . , e
′
i, e
′′
i , . . . , e

′′
n] in

order to make σ× idI |[e′0,...,e′i,e′′i ,...,e′′n] into a genuine singular (n+ 1)-simplex, however
this is too cumbersome (the notation is already bad enough as it is!)

With this in mind, we define a homomorphism

P : Cn(X)→ Cn+1(X × I)

by requiring that

Pσ =

n∑
i=0

(−1)i(σ × idI)|[e′0,...,e′i,e′′i ,...,e′′n]

and then extending by linearity (cf. Lemma 7.2.)
Now let us look at ∂Pσ, remembering that the ˆ notation over a vertex means

“delete” (see also Remark 7.14):

∂Pσ =
∑
j≤i

(−1)i+j(σ × idI)|[e′0,...,ê′j ,...,e′i,e′′i ,...,e′′n]

+
∑
i≤j

(−1)i+j+1(σ × idI)|[e′0,...,e′i,e′′i ,...,ê′′j ,...e′′n].
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The terms with i = j all cancel2 apart from the first and last ones:

(σ × idI)|[ê′0,e′′0 ,...,e′′n] and − (σ × idI)|[e′0,...,e′n,ê′′n],

which are precisely #σ and −ı#σ respectively. Meanwhile the terms with i 6= j are
precisely −P∂σ, since

P∂σ =

n∑
i=0

(−1)iPσ|[e0,...,êi,...,en]

=
∑
j<i

(−1)i+j−1(σ × idI)|[e′0,...,ê′j ,...,e′i,e′′i ,...,e′′n]

+
∑
i<j

(−1)i+j(σ × idI)|[e′0,...,e′i,e′′i ,...,ê′′j ,...e′′n].

Putting this altogether we obtain

∂Pσ = #σ − ı#σ − P∂σ.

The same is true for any chain c ∈ Cn(X) by Lemma 7.2, and hence Lemma 8.7
completes the proof.

We can now prove (8.1).

Theorem 8.9 (The homotopy axiom). Let f, g : X → Y be two homotopic maps.
Then Hn(f) = Hn(g) for all n ≥ 0. Thus for each n ≥ 0, Hn : hTop → Ab is a
functor.

Proof. Let F : f ' g be a homotopy. Then using the maps ı and  from Proposition
8.5, we have

f = F ◦ ı, g = F ◦ .

Thus as Hn is a functor, we have

Hn(f) = Hn(F ◦ ı) = Hn(F ) ◦Hn(ı) = Hn(F ) ◦Hn() = Hn(g).

In the same way as Corollary 7.23, we obtain the following result.

Corollary 8.10. If X and Y have the same homotopy type then Hn(X) ∼= Hn(Y )
for all n ≥ 0, where the isomorphism is induced by any homotopy equivalence.

Proof. Immediate from Problem A.2.

We also have:

Corollary 8.11. If X is contractible then Hn(X) = 0 for all n > 0.

Proof. Immediate from the previous corollary and the dimension axiom (Proposition
8.1.)

2Remember we are “hiding” the face maps with this notation ...
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LECTURE 9

The Hurewicz Theorem

In this lecture we investigate the relationship between H1(X) and π1(X, p). It should
come as no surprise that there is one, since ∆1 is homeomorphic to an interval, but
at the same time they cannot be identical, since π1(X, p) is not necessarily abelian
(cf. Problem C.2 and Problem C.3), meanwhile by definition H1(X) always is.

We begin by defining a function h : π1(X, p)→ H1(X) called the Hurewicz map.
We will then prove that h is a surjective homomorphism and identify its kernel.

Remark 9.1. We have already implicitly used the fact that ∆1 and I are home-
omorphic, and thus a singular 1-simplex is the same thing as a path. However in
this lecture it is important to keep track of whether we are working with a singular
1-simplex or a path. To this end, let θ : ∆1 → I denote the homeomorphism that
sends

∆1 3
1∑
i=0

si ei 7→ s1 ∈ I.

We will use the following slightly imprecise convention: if u : I → X is a path, then
u′ := u ◦ θ : ∆1 → X is a singular 1-simplex. Explicitly,

u′(s0, s1) = u(s1).

With this convention, if u and v are two paths such that u(1) = v(0) then the
concatenated path u ∗ v becomes:

(u ∗ v)′(s0, s1) =

{
u′(2s0 − 1, 2s1), 0 ≤ s1 ≤ 1

2 ,

v′(2s0, 2s1 − 1), 1
2 ≤ s1 ≤ 1.

(9.1)

Conversely if σ : ∆1 → X is a singular 1-simplex then σ′ := σ ◦θ−1 : I → X is a path.
Explicitly

σ′(s) = σ(1− s, s).

The imprecise bit is that the ′ denotes either composition with θ or θ−1 depending
on whether we start with a path or a simplex). Since we always use u, v, w for paths
and σ, τ for simplices, this should not be too confusing.

Proposition 9.2. Let p ∈ X. There is a well defined function h : π1(X, p)→ H1(X)
given by

[u] 7→ 〈u′〉,

where u is a loop in X based at p.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Where necessary, we will write hp instead of h to indicate the dependence on p.

Proof. Clearly u′ = u ◦ θ is a singular 1-simplex in X, and thus in particular belongs
to C1(X). In fact, u′ ∈ Z1(X), since

∂u′ = u(θ(e1))− u(θ(e0)) = u(1)− u(0) = 0.

Thus 〈u′〉 is a well defined element in H1(X). Now recall the map ω : I → S1 from the
solution to Problem B.5 given by ω(s) = e2πis. From u we obtain the map û : S1 → X
given by û = u ◦ ω−1. The map û then induces a map H1(û) : H1(S1) → H1(X).
Then using the fact that H1 is a functor, we have

〈u′〉 = 〈û ◦ ω ◦ θ〉 = H1(û)〈ω ◦ θ〉,

as elements of H1(X). Here we view ω ◦ θ : ∆1 → S1 as a singular 1-simplex in
S1. Now if v is another closed path in X based at p with u ' v rel ∂I then by the
solution to Problem B.5 the corresponding maps û and v̂ are homotopic rel 1. Thus
by the homotopy axiom of singular homology, H1(û) = H1(v̂). Thus

〈u′〉 = H1(û)〈ω ◦ θ〉 = H1(v̂)〈ω ◦ θ〉 = 〈v′〉,

which shows that the class 〈u′〉 only depends on [u]. This completes the proof.

Now let us prove that h is a homomorphism of groups. Let us emphasise (we have
already been doing this, but you may not have noticed) that we are using additive
notation for homology classes (this makes sense because the homology groups are
always abelian).

Proposition 9.3. The Hurewicz map h : π1(X, p) → H1(X) is a group homomor-
phism: for all [u], [v] ∈ π1(X, p), we have

h([u]) + h([v]) = h([u ∗ v]).

Proof. Let u and v be loops in X based at p. Define a continuous map σ : ∆2 → X
as indicated by Figure 9.1. Specifically, we define σ to be u′, v′, and (u ∗ v)′ on the
boundary of ∂∆2 as the picture suggests:

σ(1− s, s, 0) := u(s), σ(0, 1− s, s) := v(s), σ(1− s, 0, s) := (u ∗ v)(s).

For fixed s, we then define σ on the interior of ∆2 to be constant on the line segments
from a = a(s) to b = b(s) and from c = c(s) to d = d(s). Here a(s) = (1 − s, s, 0),
b(s) =

(
1
2(2 − s), 0, s2

)
, c(s) = (0, 1 − s, s) and d(s) =

(
1
2(1 − s), 0, 1

2(1 + s)
)
. The

gluing lemma shows that σ is continuous, and hence is a singular 2-simplex in X.
An explicit formula for σ using (9.1) is

σ(s0, s1, s2) := (u ∗ v)′
(
s0 +

s1

2
,
s1

2
+ s2

)
.

Now observe that

∂σ = σ ◦ ε0 − σ ◦ ε1 + σ ◦ ε2 = v′ − (u ∗ v)′ + u′.

2



Thus in H1(X), we have
〈u′〉+ 〈v′〉 = 〈(u ∗ v)′〉,

or equivalently
h([u]) + h([v]) = h([u ∗ v]),

which shows that h is a homomorphism as desired.

Figure 9.1: Proving h is a homomorphism.

We now present the following simple corollary of Proposition 2.15, which we will
need when examining the kernel of h.

Proposition 9.4. Let σ : ∆2 → X be a singular 2-simplex. Abbreviate σi := σ ◦ εi
for i = 0, 1, 2, so that σi is a singular 1-simplex in X. See Figure 9.2. Then the path
σ′0 ∗ σ̄′1 ∗ σ′2 is nullhomotopic rel ∂I.

Figure 9.2: σ : ∆2 → X

Proof. By Problem D.2, the map σ induces a map g : B2 → X, given by g(x) =
σ(h−1(x)), where h : ∆2 → B2 is the homeomorphism mapping (∆2, ∂∆2) →
(B2, S1). Let f := g|S1 , then f is a reparametrisation of the loop σ′0 ∗ σ̄′1 ∗ σ′2. By
Proposition 2.15, f is nullhomotopic rel 1 in S1. Thus σ′0 ∗ σ̄′1 ∗ σ′2 is nullhomotopic
rel ∂I.

We will also need the following (trivial) piece of algebra. The lemma is basically
a fancy way of saying “if something looks like it should cancel, then it does”. The
important thing in the following lemma is that the second group A is abelian.
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Lemma 9.5 (Substitution Principle). Let F be a free abelian group with basis B.
Let b0, b1, . . . , bk be a list (possibly with repetitions) of elements of B, and assume
m0,m1, . . . ,mk are integers such that

m0 b0 =
k∑
i=1

mi bi.

Let A be an abelian group, and suppose a0, a1, . . . , ak are elements of A such that

bi = bj ⇒ ai = aj .

Then in A, one also has

m0 a0 =

k∑
i=1

mi ai.

Proof. Define a function ϕ : B → A by setting ϕ(bi) = ai for i = 0, 1, . . . , k and
ϕ(b) = 0 for all other elements of B. This is well defined by assumption. Then by
Lemma 7.2, there exists a unique group homomorphism ϕ̃ : F → A extending ϕ.
Then

0 = ϕ̃

(
m0 b0 −

k∑
i=1

mi bi

)
= m0 a0 −

k∑
i=1

mi ai,

Now let us recall a standard piece of group theory.

Definition 9.6. Let G be any group (not necessarily abelian). Given g, h ∈ G, we
define their commutator to be the element

[g, h] := ghg−1h−1.

We define the commutator subgroup of G to be the subgroup [G,G] of G generated
by all the commutators. This is a normal abelian subgroup of G, and [G,G] = {1}
(where 1 is the identity element of G) if and only if G is abelian. If N is a normal
subgroup of G, then G/N is abelian if and only if [G,G] ≤ N . We define the abelian-
isation of G to be the quotient group Gab = G

/
[G,G]. As you will see on Problem

E.1 on Problem Sheet E, the abelianisation Gab together with the group homomor-
phism (the projection) p : G → Gab can be characterised by a universal property:
namely that if A is any abelian group and ϕ : G → A is any group homomorphism,
there exists a unique homomorphism ϕ̃ such that the following commutes:

G A

Gab

ϕ

p
ϕ̃

We are now ready to state and prove the main result of today’s lecture. As
stated, this result is actually due to Poincaré, not Hurewicz, but there is a more
general theorem1 that extends this which is due to Hurewicz, and hence this result
is commonly called the “Hurewicz Theorem”.

1We will discuss the more general version at the end of Algebraic Topology II (Theorem 46.1.
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Theorem 9.7 (Hurewicz Theorem). Let X be a path connected topological space.
Then the induced homomorphism h̃ : π1(X, p)ab → H1(X) is a group isomorphism.

Proof. Since X is path connected, choose a path wx : I → X such that wx(0) = p
and wx(1) = x for each x ∈ X. Let us insist that wp is the constant path ep.

We will first show that h is surjective. Suppose

c =

k∑
i=1

mi σi ∈ Z1(X).

Since c is a cycle, we have

0 = ∂c =
k∑
i=1

mi

(
σi(e1)− σi(e0)

)
, (9.2)

which we view as an equation among the basis elements (i.e. points in X) of the free
abelian group C0(X). Set

yi := σi(e1), zi := σi(e0).

See Figure 9.3. We can apply the substitution principle to the list

Figure 9.3: Proving h is surjective.

y1, z1, . . . , yk, zk,

in the free abelian group C0(X) and compare it to the list

w′y1
, w′z1 , . . . , w

′
yk
, w′zk ,

in C1(X). Then (9.2) tells us2 that

k∑
i=1

mi

(
w′yi − w

′
zi

)
= 0

2Less formally, this is simply the observation that since c is a cycle, the sum of the paths wyi and w̄zi
cancel.
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in C1(X). Thus

c = c− 0 = c−

(
k∑
i=1

mi

(
w′yi − w

′
zi

))
=

k∑
i=1

mi

(
w′zi + σi − w′yi

)
. (9.3)

But now by assumption wzi ∗ σ′i ∗ w̄yi is a loop in X based at p, and hence we can
feed it to h:

h

(
k∏
i=1

[
wzi ∗ σ′i ∗ w̄yi

]mi) (∗)
=

k∑
i=1

mih
[
wzi ∗ σ′i ∗ w̄yi

]
(†)
=

k∑
i=1

mi〈w′zi + σi + w̄′yi〉

(‡)
=

k∑
i=1

mi〈w′zi + σi − w′yi〉

(♥)
= 〈c〉.

where (∗) used Proposition 9.3, (†) used Problem E.4, (‡) used Problem E.3 and
finally (♥) used (9.3). This shows that h is surjective.

We now build an inverse η̃ : H1(X)→ π1(X, p)ab to the induced map h̃, which will
prove that h̃ is an isomorphism. Suppose σ : ∆1 → X is a 1-simplex. We associate
to σ the class in π1(X, p)ab represented by the loop wσ(e0) ∗ σ′ ∗ w̄σ(e1). Extend this
by linearity to define a map

η : C1(X)→ π1(X, p)ab.

We claim that η vanishes on B1(X). For this let τ : ∆2 → X be a singular 2-simplex.
We compute η(∂τ). As in Proposition 9.4, let τi := τ ◦ εi for i = 0, 1, 2. See Figure
9.4. Then

Figure 9.4: Showing η(∂τ) = 1.
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η(∂τ) = η(τ0) ∗ η(τ1)−1 ∗ η(τ2)

=
[
wτ0(e0) ∗ τ ′0 ∗ w̄τ0(e1)

]
∗
[
wτ1(e0) ∗ τ ′1 ∗ w̄τ1(e1)

]−1
∗
[
wτ2(e0) ∗ τ ′2 ∗ w̄τ2(e1)

]
=
[
wτ0(e0) ∗ τ ′0 ∗ τ̄ ′1 ∗ τ ′2 ∗ w̄τ2(e1)

]
(∗)
=
[
wτ0(e0) ∗ w̄τ2(e1)

]
= 1,

where (∗) used Proposition 9.4. Thus η|Z1(X) factors to define a map η̃ : H1(X) →
π1(X, p)ab. By construction η̃ ◦ h̃ = id. This completes the proof.
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LECTURE 10

Chain complexes

In this lecture we introduce a new category, Comp, and a new subject: homological
algebra.

Definition 10.1. A chain complex is a sequence of abelian groups and homomor-
phisms

. . . Cn+1 Cn Cn−1 . . .∂ ∂

for n ∈ Z which satisfies
∂2 = 0, ∀n ∈ Z.

We refer1 to the entire complex as (C•, ∂) or sometimes just C•. The maps ∂ are
called the boundary operators of the chain complex.

Of course, we have already met one key example:

Example 10.2. Let X be a topological space. Then the singular chains (C•(X), ∂)
is a chain complex. Note that in this example the abelian groups are all zero for
negative subscripts; this however is not part of the definition in general.

Definition 10.3. The fact that ∂2 = 0 means that if we define

Zn = Zn(C•) = ker ∂ : Cn → Cn−1

and
Bn = Bn(C•) = im ∂ : Cn+1 → Cn

then
Bn ⊆ Zn.

By analogy with the singular chain complex, we call elements of Zn n-cycles and
elements of Bn n-boundaries. We define the nth homology group of the chain
complex C• to be the quotient group

Hn = Hn(C•) := Zn(C•)
/
Bn(C•).

We will continue to the use the notation 〈c〉 to denote the class of an element c ∈ Zn
in Hn.

Now let us introduce another key notion.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
1Yes, I know it is somewhat illogical to omit the subscript on the ∂ and not on the C, but in practice

it makes things more convenient.
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Definition 10.4. A sequence A
f−→ B

g−→ C of two homomorphisms of abelian groups
is said to be exact at B if

im f = ker g.

More generally, a sequence

. . . An+1
fn+1−−−→ An

fn−→ An−1 . . . , n ∈ Z

is said to be exact if it is exact at every An.

Example 10.5. Using the notion of exactness we can rephrase other definitions from
basic algebra. Suppose f : A→ B is a homomorphism of abelian groups.

• f is injective if and only if 0→ A
f−→ B is exact.

• f is surjective if and only if A
f−→ B → 0 is exact.

• f is an isomorphism if and only if 0→ A
f−→ B → 0 is exact.

• Slightly less obviously, if A
f−→ B

g−→ C
h−→ D is exact then f is surjective if and

only if h is injective.

Definition 10.6. A short exact sequence of abelian groups is an exact sequence
of the form

0→ A
f−→ B

g−→ C → 0.

In this case, A ∼= im f and coker f := B/ im f ∼= C via b+ im f 7→ g(b).

In contrast, a long exact sequence is one that has (potentially) infinitely many
terms.

Definition 10.7. A chain complex C is said to be acyclic if Cn+1
∂−→ Cn

∂−→ Cn−1

is exact at Cn for all n.

We then have trivially:

Proposition 10.8. A chain complex C is acyclic if and only if Hn(C) = 0 for all
n ∈ Z.

Let us now make the chain complexes into a category.

Definition 10.9. Suppose (C•, ∂) and (C ′•, ∂
′) are two chain complexes. A chain

map f : C• → C ′• is a sequence of group homomorphisms fn : Cn → C ′n such that
the following diagram commutes for all n ∈ Z:

. . . Cn+1 Cn Cn−1 . . .

. . . C ′n+1 C ′n C ′n−1 . . .

∂

fn+1

∂

fn fn−1

∂′ ∂′

Usually we will just write f for the maps fn (to minimise the number of subscripts
involved), which simplifies the formula to

∂′ ◦ f = f ◦ ∂.
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Composition of two chain maps is defined as one would guess: if f : C• → C ′• and
g : C ′• → C ′′• are two chain maps then g ◦ f : C• → C ′′• is the chain map given by
(g ◦ f)n = gnfn. This is indeed a valid chain map, i.e. ∂′′(g ◦ f)n = (g ◦ f)n−1 ◦ ∂, as
the following diagram commutes:

Cn C ′n C ′′n

Cn−1 C ′n−1 C ′′n−1

fn

∂

gn

∂′ ∂′′

fn−1
gn−1

Example 10.10. If f : X → Y is a continuous map between two topological spaces
then f# : C•(X)→ C•(Y ) is a chain map.

Definition 10.11. The category Comp has objects the chain complexes (C•, ∂),
morphisms the chain maps f : C• → C ′•, and composition as specified above.

The singular chain complex can now be interpreted as a functor.

Proposition 10.12. There is a functor Top→ Comp that associates to a topological
space X its singular chain complex C•(X) and to a continuous map f : X → Y the
associated map f# : C•(X)→ C•(Y ).

Proof. This follows from the results of Lecture 7.

The reason for insisting that ∂′f = f∂ in the definition of a chain map is that it
means a chain map induces a map on the respective homologies:

Hn(f) : Hn(C•)→ Hn(C ′•)

given by
Hn(f)〈c〉 := 〈fnc〉.

This is well defined as by assumption

fn(Zn) ⊆ Z ′n, fn(Bn) ⊆ B′n.

This means that we can interpret Hn as a functor.

Proposition 10.13. For each n ∈ Z, there exists a functor Hn : Comp → Ab called
the nth homology functor that sends C• toHn(C•) and to a chain map f : C• → C ′•
the associated map Hn(f) : Hn(C•)→ Hn(C ′•).

The proof is immediate. This means we can now see the construction of the
singular homology as a two-stage process. The first is topological: this is assignment
X 7→ C•(X). The second is purely algebraic: this is the assignment C•(X) 7→
Hn(C•(X)) = Hn(X).

Proposition 10.14. The functor Hn : Comp→ Ab is an additive functor2, that is
Hn(f + g) = Hn(f) +Hn(g).

2I will not give the precise definition of an additive functor, since we do not need it. It’s more
complicated then you think, since in order to define additive functors one first needs to define additive
categories ...
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Now let me bombard you with more definitions. They are all straightforward.

Definition 10.15. A subcomplex (C•, ∂) of chain complex (C ′•, ∂
′) is a chain

complex such that Cn ⊆ C ′n for all n ∈ Z and such that ∂n = ∂′n|Cn . Denoting
by in : Cn → C ′n the inclusion, the second condition is equivalent to saying that
i : C• → C ′• is a chain map.

Definition 10.16. If (C•, ∂) is a subcomplex of (C ′•, ∂
′), one can form the quotient

complex (C̄•, ∂̄) where
C̄n = C ′n/Cn

and ∂̄ is the induced map.

Definition 10.17. Suppose f : (C•, ∂)→ (C ′•, ∂
′) is a chain map between two com-

plexes. Then (ker f)• is a subcomplex of C• and (im f)• is a subcomplex of C ′•; the
boundary operator of (ker f)• is simply

∂n|ker fn : ker fn → ker fn−1,

and similarly the boundary operator of (im f)• is the restriction

∂′n|im fn : im fn → im fn−1.

Note these only form subcomplexes because f is a chain map! The cokernel of f is
the chain complex (coker f)• given by

coker fn = C ′n/ im fn,

which is itself a quotient complex of C ′• since (im f)• is a subcomplex of C ′•.

This allows us to talk about a sequence of complexes being exact.

Definition 10.18. Suppose we are given complexes (Cm• , ∂
m) for m ∈ Z and chain

maps fm : Cm• → Cm−1
• . Pictorially, this means we have the following commutating

mess:
...

...
...

. . . Cm+1
n+1 Cmn+1 Cm−1

n+1 . . .

. . . Cm+1
n Cmn Cm−1

n . . .

. . . Cm+1
n−1 Cmn−1 Cm−1

n−1 . . .

...
...

...

fm+1
n+1

∂m+1

fmn+1

∂m ∂m−1

fm+1
n

∂m+1

fmn

∂m ∂m−1

fm+1
n−1 fmn−1

We say that sequence (Cm• , f
m) is exact if (as complexes) (ker fm)• = (im fm+1)•

for every m.
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Definition 10.19. A short exact sequence of chain complexes is an exact sequence
of chain complexes of the form

0→ A•
f−→ B•

g−→ C• → 0,

where 0 denotes the chain complex all of whose entries are zero. By Problem E.5
on Problem Sheet E, the rows of short exact sequences of chain complexes are short
exact sequences of abelian groups.

Definition 10.20. Let C• and C ′• be two subcomplexes of C ′′• . The intersection of
C• and C ′• is the subcomplex C• ∩ C ′• whose nth term is Cn ∩ C ′n, and similarly the
sum of C• and C ′• is the subcomplex C• + C ′• whose nth term is Cn + C ′n.

One can also form direct sums: if {(Cλ• , ∂λ) | λ ∈ Λ} is a family of complexes
indexed by a set Λ, then their direct sum is the complex

⊕
λC

λ
• equipped with the

boundary operator
∑

λ ∂
λ.

Now we define the abstract analogue of Lemma 8.7.

Definition 10.21. Let f, g : (C•, ∂)→ (C ′•, ∂
′) be two chain maps. We say that f and

g are chain homotopic, written f ' g if there exists a sequence of homomorphisms

P : Cn → C ′n+1, n ∈ Z,

such that
∂′P + P∂ = fn − gn, ∀n ∈ Z.

The sequence P = (Pn) is called a chain homotopy, and we write P : f ' g.

Definition 10.22. We say that f : C• → C ′• is a chain equivalence if there exists
g : C ′• → C• such that g ◦ f ' idC• and f ◦ g ' idC′• .

Remark 10.23. The relation of being chain homotopic is a congruence on Comp,
and this can be used to define a category hComp.

The next result shows that the homology functor descends to hComp.

Proposition 10.24. Let f, g : (C•, ∂) → (C ′•, ∂
′) be two chain maps with f ' g.

Then for all n,
Hn(f) = Hn(g) : Hn(C•)→ Hn(C ′•).

In particular, if f is a chain equivalence then Hn(f) is an isomorphism for each n.

The proof is identical to Lemma 8.7, but let us repeat it anyway.

Proof. Take c ∈ Zn. Then

(fn − gn)c = (∂′P + P∂)c = ∂′Pc ∈ B′n.

Thus Hn(f)〈c〉 = Hn(g)〈c〉.

A special case of a chain homotopy is where one map is the identity and the other
is the zero map. This gets its own name.
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Definition 10.25. A contracting homotopy Q of a chain complex C• is a sequence
of maps Qn : Cn → Cn+1 such that

∂Q+Q∂ = idCn , ∀n ∈ Z.

Corollary 10.26. If a chain complex C• has a contracting homotopy then it is
acyclic.

Proof. By Proposition 10.24, we see that for all n, Hn(idC•) = Hn(0) = 0. Since Hn

is a functor, this implies that Hn(C•) = 0.

Remark 10.27. The converse to Corollary 10.26 is false. An example is given by
taking

Cn :=


Z2, n = 0,

Z, n = 1, 2,

0, n 6= 0, 1, 2,

and defining ∂ : C2 → C1 to be k 7→ 2k and ∂ : C1 → C0 by k 7→ k mod 2. This
complex is acyclic but there does not exist a contracting homotopy. Indeed, if such a
Q existed, then Q0 : C0 → C1 would define a right inverse to ∂ : C1 → C0. However
any group homomorphism Z2 → Z is trivial.

In fact, if C• is a complex all of whose groups Cn are free abelian groups (such
a chain complex is called a free chain complex), then the converse to Corollary
10.26 does hold: a free chain complex is acyclic if and only if it has a contracting
homotopy. This is proved in Proposition 27.1 below. Similarly there is a partial
converse to Proposition 10.24: if f : C• → C ′• is a chain map between two free chain
complexes such that Hn(f) is an isomorphism for all n, then f is a chain equivalence.
This is proved in Proposition 27.5 below.
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LECTURE 11

The Snake Lemma and its friends

In this lecture we start by proving the so-called Snake Lemma. The reason for the
name is the fact that the wiggly arrow in (11.1) below looks like a snake1.

Proposition 11.1 (The Snake Lemma). Suppose we are given a commutative dia-
gram of abelian groups where the rows are exact:

A B C 0

0 A′ B′ C ′

i

f

j

g h

i′ j′

Then there is a well defined homomorphism

δ : kerh→ coker f

such that there is an exact sequence

ker f → ker g → kerh
δ−→ coker f → coker g → cokerh.

Explicitly,
δ(c) = (i′)−1gj−1(c) + im f,

where (i′)−1(·) and j−1(·) denote any choice of preimage (the composition is inde-
pendent of the choices).

Proof. The proof is very easy, but I will be kind and go through it in great detail.
We will prove the result in three stages.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
1Right ... Evidently most mathematicians have never seen snakes.
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1. We first enlarge our given diagram to include the kernels and cokernels:

0 0 0

ker f ker g kerh

A B C 0

0 A′ B′ C ′

coker f coker g cokerh

0 0 0

k l

i

f

j

g h

i′ j′

p q

The maps k, l on the top row and the maps p, q are just the induced maps. That is,

k := i|ker f .

and
p(a′ + im f) := i′(a′) + im g,

as cosets, and similarly for l and q. We prove that both the top row and the bottom
row are exact. Firstly, if a ∈ ker f then gi(a) = i′f(a) = 0, so that k(a) := i(a)
belongs to ker g. Moreover lk(a) = ji(a) = 0 and hence im k ⊆ ker l. Conversely

if l(b) = 0 then j(b) = 0 and hence b = i(a) for some a as A
i−→ B

j−→ C is exact.
Moreover i′f(a) = gi(a) = g(b) = 0 as b ∈ ker g. Since i′ is injective, it follows
f(a) = 0 and thus a ∈ ker(f) with so that k(a) = b. Thus ker l ⊆ im k and we have
exactness at ker g.

Let us now prove exactness at coker g. The composition qp is obviously zero since
j′i′ = 0 by exactness at B′:

qp(a′) = j′i′(a′) + imh = 0 + imh = 0 ∈ cokerh.

Thus im p ⊆ ker q. Conversely suppose q(b′+im g) = 0. This means that j′(b′) ∈ imh,
so there exists c ∈ C such that h(c) = j′(b′). Since j is surjective, there exists b ∈ B
such that j(b) = c. Now observe j′(b′ − g(b)) = j′(b′) − j′g(b) = h(c) − hj(b) =
h(c) − h(c) = 0. Thus b′ − g(b) ∈ im i′ by exactness at B′. If a′ is such that
i′(a′) = b′ − g(b) then

p(a′ + im f) = i′(a′) + im g = b′ − g(b) + im g = b′ + im g.

Thus ker q ⊆ im p, which proves exactness at coker g.
2. Our aim now is to define a map δ such that the following sequence is exact:

ker f ker g kerh

coker f coker g cokerh

k l

δ

p q

(11.1)
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Let’s start with an element c ∈ kerh. Since j is surjective, choose b such that
j(b) = c. Observe g(b) ∈ ker j′ since j′g(b) = hj(b) = h(c) = 0. By exactness at B′,
this implies that g(b) ∈ im i′. Thus there exists a′ ∈ A′ such that i′(a′) = g(b). In
fact, since i′ is injective, a′ is unique. We define δ(c) ∈ coker f as the coset a′+ im f .

We made a choice here: j is surjective, not necessarily an isomorphism, and hence
we could have chosen a different element, say b1, such that j(b1) = c. This would give
rise to a different element a′1 ∈ A′ such that i′(a′1) = g(b1). Nevertheless, we claim
that the cosets a′ + im f and a′1 + im f coincide. This means we need to find a ∈ A
such that f(a) = a′ − a′1. But this is easy: since j(b) = j(b1) we have b− b1 ∈ ker j,
and hence by exactness at B there exists a ∈ A such that i(a) = b − b1. Then by
commutativity, i′f(a) = gi(a) = g(b − b1) = g(b) − g(b1). Since i′ is injective, it
follows that f(a) = a′ − a′1 as required.

Thus δ(c) = (i′)−1gj−1(c) + im f is well defined. It is clear that δ is a homomor-
phism, i.e. that δ(c+ c1) = δ(c) + δ(c1), since i′, g and j are all homomorphisms.

3. Finally, let us check exactness at the two new places: kerh and coker f . It is
clear that im l ⊆ ker δ. Indeed, if c = l(b) for some b then we can choose this b in
the definition of δ. Then g(b) = 0 and hence the unique preimage under i′ is a′ = 0.
Then δ(c) = 0 + im f = 0 ∈ coker f .

Now suppose that δ(c) = 0. This means that the element a′ we found belongs
to the image of f , say a′ = f(a). The gi(a) = i′(a′) = g(b). Thus b − i(a) ∈ ker g.
Moreover j(b− i(a)) = j(b)− ji(a) = c by exactness. This means that l(b− i(a)) = c
and thus c ∈ im l. This proves exactness at kerh.

Now we check exactness at coker f . Again, one direction is immediate: pδ(c)
is just the coset i′(a′) + im g in coker g. But since i′(a′) = g(b), this coset is zero,
and hence im δ ⊆ ker p. Conversely, suppose p(a′ + im f) = 0. This means that
i′(a′) ∈ im g, so there exists b ∈ B such that g(b) = i′(a′). Set c = j(b). Then
h(c) = hj(b) = j′g(b) = j′i′(a′) = 0 by exactness at B′. Then by construction,
δ(c) = a′ + im f . Thus ker p ⊆ im δ. This finally completes the proof.

Remark 11.2. This proof may look complicated, but in fact there was nothing to
it: at every stage we just “did the only thing possible”. This type of proof is rather
relaxing, and it is usually referred to as diagram chasing. The best way to get used
to the “yoga” of diagram chasing is to try some examples yourself. Thus you will no
doubt be thrilled to discover that the next two results are left as exercises for you to
solve on Problem Sheet F.

This first one is slightly less imaginatively named than the Snake Lemma.

Proposition 11.3 (The Five Lemma). Suppose we have a commutative diagram of
abelian groups, where the two rows are exact:

A B C D E

A′ B′ C ′ D′ E′

f g h k l

Then:
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1. If g and k are injective and f is surjective, h is injective.

2. If g and k are surjective and l is injective, h is surjective.

3. If f, g, k, l are all isomorphisms then so is h.

This is Problem F.1. The next one has no imagination whatsoever in its name ...

Proposition 11.4 (The Barratt-Whitehead Lemma). Suppose we have the following
commutative diagram of abelian groups, where the two rows are exact:

. . . An Bn Cn An−1 . . .

. . . A′n B′n C ′n A′n−1 . . .

in

fn

jn

gn

kn

hn fn−1

i′n j′n k′n

Assume each map hn : Cn → C ′n is an isomorphism. Then there is a long exact
sequence:

· · · → An
(in,fn)−−−−→ Bn ⊕A′n

gn−i′n−−−−→ B′n
knh
−1
n j′n−−−−−→ An−1 → . . . ,

where (in, fn) : An → Bn⊕A′n is given by a 7→ (in(a), fn(a)) and gn− i′n : Bn⊕A′n →
B′n is given by (b, a′) 7→ gn(b)− i′n(a′).

This is Problem F.2. Let us now use the Snake Lemma to prove the following
foundational result in homological algebra.

Theorem 11.5 (The long exact sequence in homology). Let

0→ C•
f−→ C ′•

g−→ C ′′• → 0 (11.2)

be a short exact sequence of chain complexes. Then there is a sequence δn : Hn(C ′′• )→
Hn−1(C•) of homomorphisms such that there is a long exact sequence:

· · · → Hn(C•)
Hn(f)−−−−→ Hn(C ′•)

Hn(g)−−−−→ Hn(C ′′• )
δ−→ Hn−1(C•)→ . . .

We call δ = (δn) the connecting homomorphism of the short exact sequence
(11.2). Explicitly,

δn〈c〉 = 〈f−1
n−1∂

′g−1
n c〉, ∀c ∈ Zn(C ′′• ), (11.3)

where ∂′ is the boundary operator of C ′•.

Proof. Write Zn = ker
(
∂ : Cn → Cn−1

)
, Bn = im

(
∂ : Cn+1 → Cn

)
and Hn =

Zn/Bn, and similarly for the other complexes. Then the following diagram satisfies
the requirements of the Snake Lemma, where the written maps are the induced ones:

Cn/Bn C ′n/B
′
n C ′′n/B

′′
n 0

0 Zn−1 Z ′n−1 Z ′′n−1

fn

∂

gn

∂′ ∂′′

fn−1
gn−1
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Adding in the kernels and cokernels of the vertical maps, we obtain (where now all
the maps are omitted for clarity):

0 0 0

Hn H ′n H ′′n

Cn/Bn C ′n/B
′
n C ′′n/B

′′
n 0

0 Zn−1 Z ′n−1 Z ′′n−1

Hn−1 H ′n−1 H ′′n−1

0 0 0

The Snake Lemma thus provides us with a map δn : H ′′n → Hn−1, which is the map
we are looking for.

We now prove that the long exact sequence is natural. It won’t be until the end
of the course that I explain the precise definition of the word “natural”. For now,
just think of “natural” meaning that whenever you draw a diagram that “ought” to
commute, then it does.

Proposition 11.6 (Naturality of the connecting homomorphism). Suppose we are
given a commutative diagram of chain complexes with exact rows:

0 A• B• C• 0

0 A′• B′• C ′• 0

f

i

g

j k

f ′ g′

Then there is a commutative diagram of abelian groups with exact rows:

. . . Hn(A•) Hn(B•) Hn(C•) Hn−1(A•) . . .

. . . Hn(A′•) Hn(B′•) Hn(C ′•) Hn−1(A′•) . . .

Hn(f)

Hn(i)

Hn(g)

Hn(j)

δn

Hn(k) Hn−1(i)

Hn(f ′) Hn(g′) δ′n

Proof. We’ve already proved most things. That the rows are exact is the content of
Theorem 11.5. The first two squares commute because Hn is a functor. Thus we need
only check that the right-hand square commutes. So for this, suppose c ∈ Zn(C) is
a cycle representing a homology class 〈c〉 ∈ Hn(C•). Since g is surjective (as a chain
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map), the map gn : Bn → Cn is surjective (cf. Problem E.5). Thus there exists
b ∈ Bn with gnb = c. Then

Hn−1(i)δn〈c〉 = Hn−1(i)δn〈gnb〉.

Let ∂ denote the boundary operator of B• and ∂′ the boundary operator of B′• (these
are the only two boundary operators we will need in the following). Now we note
that from (11.3),

Hn−1(i)δn〈gnb〉 = Hn−1(i)〈f−1
n−1∂b〉 = 〈in−1f

−1
n−1∂b〉.

Now using jn−1 ◦ fn−1 = f ′n−1 ◦ in−1 we have

〈in−1f
−1
n−1∂b〉 = 〈(f ′n−1)−1jn−1∂b〉.

Since j is a chain map, 〈(f ′n−1)−1jn−1∂b〉 = 〈(f ′n−1)−1∂′jnb〉. Now using (11.3) for
δ′n, we see that:

〈(f ′n−1)−1∂′jnb〉 = δ′n〈g′njnb〉.

Now use g′n ◦ jn = kn ◦ gn to obtain

δ′n〈g′njnb〉 = δ′n〈kngnb〉.

Then as 〈kngnb〉 = Hn(k)〈gnb〉 = Hn(k)〈c〉 we finally have

Hn−1(i)δn〈c〉 = δ′nHn(k)〈c〉,

which proves the last square commutes.
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LECTURE 12

Relative homology and reduced
homology

In this lecture we extend Hn to a functor Top2 → Ab. To begin with, we need the
following piece of pedantry.

Lemma 12.1. Let X ′ be a subspace of X with inclusion ı : X ′ ↪→ X. Then for every
n ≥ 0, the map ı# : Cn(X ′)→ Cn(X) is an injection.

Proof. Let c =
∑
mi σi ∈ Cn(X ′). We may assume all the σi are distinct. By

definition, ı#c =
∑
mi ı◦σi. Since ı◦σi differs only from σi only by having its target

enlarged, it follows that the ı ◦ σi are all distinct. Now if c ∈ ker ı# then we have

0 =
∑

mi ı ◦ σi.

Since Cn(X) is free abelian with basis all the singular n-simplices in X, it follows
that all the mi are zero, and hence c = 0.

This means that we can unambiguously think of C•(X
′) as a subcomplex of C•(X)

(i.e. by identifying C•(X
′) with (im ı#)•.) We shall do this without further comment.

Thus we have a short exact sequence of complexes:

0→ C•(X
′)→ C•(X)→ C•(X)

/
C•(X

′)→ 0.

Definition 12.2. Let X ′ ⊆ X be a subspace. We define the relative homol-
ogy groups Hn(X,X ′) of the pair (X,X ′) to be the homology of the complex

C•(X)
/
C•(X

′).

The next result is immediate from Theorem 11.5 and Proposition 11.6. Like the
dimension axiom (Proposition 8.1) and the homotopy axiom (Theorem 8.9), we call
this result an “axiom” since it will turn out to be one of the four axioms of a homology
theory.

Proposition 12.3 (The exact sequence axiom). Let X ′ be a subspace of X. Then
there is a long exact sequence

. . . Hn(X ′)→ Hn(X)→ Hn(X,X ′)
δ−→ Hn−1(X ′)→ . . .
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Moreover if f : (X,X ′) → (Y, Y ′) is a map of pairs then there is a commutative
diagram:

. . . Hn(X ′) Hn(X) Hn(X,X ′) Hn−1(X ′) . . .

. . . Hn(Y ′) Hn(Y ) Hn(Y, Y ′) Hn−1(Y ′) . . .

where the vertical maps are all induced by f .

Definition 12.4. This construction also allows us to see homology as a functor
Hn : Top2 → Ab. Firstly we define the chain complex functor Top2 → Comp that

sends (X,X ′) to C•(X)
/
C•(X

′) and sends a map f : (X,X ′)→ (Y, Y ′) to the induced
map

f# : C•(X)
/
C•(X

′)→ C•(Y )
/
C•(Y

′)

(this works as f#(Cn(X ′)) ⊆ Cn(Y ′).) Then we apply the usual homology functor
Hn : Comp→ Ab.

Remark 12.5. Taking X ′ = ∅ recovers our original groups:

Hn(X, ∅) = Hn(X), ∀n ≥ 0.

Let us now give a slightly more useful way of defining Hn(X,X ′).

Definition 12.6. Define the group of relative n-cycles mod X ′ to be

Zn(X,X ′) :=
{
c ∈ Cn(X) | ∂c ∈ Cn−1(X ′)

}
,

and the group of relative n-boundaries mod X ′ to be

Bn(X,X ′) :=
{
c ∈ Cn(X) | c− c′ ∈ Bn(X) for some c′ ∈ Cn(X ′)

}
= Bn(X) + Cn(X ′).

Then Bn(X,X ′) ⊆ Zn(X,X ′).

We have:

Proposition 12.7. For all n ≥ 0,

Hn(X,X ′) ∼= Zn(X,X ′)
/
Bn(X,X ′).

Proof. By definition, the boundary operator ∂̄ of the quotient complex C•(X)
/
C•(X

′)

is given by

∂̄ : c+ Cn(X ′) 7→ ∂c+ Cn−1(X ′), c ∈ Cn(X), n ≥ 0.

Thus
ker ∂̄ =

{
c+ Cn(X ′) | ∂c ∈ Cn−1(X ′)

}
= Zn(X,X ′)

/
Cn(X ′)
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and
im ∂̄ =

{
c+ Cn(X ′) | c ∈ Bn(X)

}
= Bn(X,X ′)

/
Cn(X ′).

The claim thus follows from the third isomorphism for groups1.

The following result shows that the relative homology groups often vanish in
dimension zero, unlike the “absolute” ones which never do.

Proposition 12.8. Suppose X is path connected and X ′ is a non-empty subspace.
Then H0(X,X ′) = 0.

Proof. Fix p ∈ X ′. Suppose c =
∑
mx x ∈ Z0(X,X ′). Choose a path2 σx : ∆1 → X

such that σx(e0) = p and σx(e1) = x. Then a =
∑
mx σx ∈ C1(X) and

∂a = c−
(∑

mx

)
p.

Since c′ := (
∑
mx) p ∈ C0(X ′), we thus have c− c′ ∈ B0(X), so that c ∈ B0(X,X ′).

Thus H0(X,X ′) = 0.

Next, we have the following result.

Proposition 12.9. Let {Xλ | λ ∈ Λ} denote the path components of X, and let
X ′ ⊆ X denote a subspace. For each n ≥ 0, one has

Hn(X,X ′) ∼=
⊕
λ∈Λ

Hn(Xλ, Xλ ∩X ′).

Proof. Immediate from Problem D.4 and Problem E.6.

Let us record a special case of this statement, since it will be useful in Lecture 22
when we discuss the axioms.

Corollary 12.10 (The additivity axiom). Let (Xλ, X
′
λ), λ ∈ Λ be a family of pairs

of spaces. Denote by

ıλ : (Xλ, X
′
λ) ↪→

(⊔
λ∈Λ

Xλ,
⊔
λ∈Λ

X ′λ

)

the inclusion. Then for all n ≥ 0, the map

∑
λ∈Λ

Hn(ıλ) :
⊕
λ∈Λ

Hn(Xλ, X
′
λ)→ Hn

(⊔
λ∈Λ

Xλ,
⊔
λ∈Λ

X ′λ

)
.

is an isomorphism.

1Which states that if N ≤ K ≤ G are normal subgroups then (G/N)/(K/N) ∼= G/K, i.e. you can
“cancel” the N .

2We won’t bother distinguishing paths and 1-simplices in this lecture.
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Corollary 12.11. Let {Xλ | λ ∈ Λ} denote the path components of X, and let
X ′ ⊆ X denote a subspace. The group H0(X,X ′) is free abelian, with

rank H0(X,X ′) = #
{
λ ∈ Λ | Xλ ∩X ′ = ∅

}
.

Proof. If Xλ ∩ X ′ 6= ∅ then H0(Xλ, Xλ ∩ X ′) = 0 by Proposition 12.8, since Xλ is
path connected for each λ by definition. If Xλ ∩ X ′ = ∅ then H0(Xλ, Xλ ∩ X ′) =
H0(Xλ) ∼= Z by Proposition 8.3.

Now let us specialise to the case where X ′ is a single point {p} for some p ∈ X.

Corollary 12.12. If (X, p) is a pointed space then H0(X, p) is a free abelian group
of (possibly infinite) rank r, where X has r + 1 path components.

Meanwhile for n ≥ 1, taking a single point doesn’t change the homology:

Proposition 12.13. Let (X, p) be a pointed space. Then for all n ≥ 1,

Hn(X, p) ∼= Hn(X).

Proof. By Proposition 12.3 there is an exact sequence

. . . Hn(p)→ Hn(X)→ Hn(X, p)
δ−→ Hn−1(p)→ . . .

If n ≥ 2 then Hn(p) = 0 and Hn−1(p) = 0 by the dimension axiom, and thus we
immediately see Hn(X, p) ∼= Hn(X). The case n = 1 is slightly more tricky; it can
be deduced directly from the long exact sequence by studying what the actual maps
do at the tail end:

0→ H1(X)→ H1(X, p)→ H0(p)→ H0(X)→ H0(X, p)→ 0.

Namely, by the fourth item of Example 10.5, the map H1(X)→ H1(X, p) is surjective
if and only if the map H0(p) → H0(X) is injective. Since H0(p) = Z and H0(X) is
free abelian, either H0(p)→ H0(X) is the zero map or it is injective. By exactness,
if it was the zero map then H0(X) → H0(X, p) would have to be injective. Thus
to complete the proof we need only exhibit an element in the kernel of the map
H0(X)→ H0(X, p). Such an element is provided by 〈p〉 (cf. the proof of Proposition
8.3.)

This means that for n ≥ 1 we can regard Hn as a functor on Top∗. Let us now
introduce another algebraic concept.

Definition 12.14. Suppose 0 → A
f−→ B

g−→ C → 0 is a short exact sequence of
abelian groups. We say that the sequence splits if there exists a map h : C → B
such that gh = idC . We call h a splitting map.

The splitting map h is not unique. On Problem Sheet F you will prove that an
equivalent definition is asking that f admits a left inverse:
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Proposition 12.15. Suppose 0 → A
f−→ B

g−→ C → 0 is a short exact sequence of
abelian groups. Then the sequence splits if and only if there exists a map k : B → A
such that kf = idA.

Here we show that if a sequence splits the middle term is a direct sum.

Proposition 12.16. Suppose 0→ A
f−→ B

g−→ C → 0 is a split short exact sequence
of abelian group. Then B ∼= A⊕ C.

Proof. Let h : C → B be such that gh = idC . We show that B = im f ⊕ imh. If
b ∈ B then g(b) ∈ C and b − hg(b) ∈ ker g because g(b) − gh(gb) = 0 as gh = idC .
Thus by exactness, there exists a ∈ A with f(a) = b− hg(b). Thus B = im f + imh.
It remains to show that im f ∩ imh = {0}. If f(a) = x = h(c) then g(x) = gf(a) = 0
and also g(x) = gh(c) = c, thus x = h(c) = 0.

Remark 12.17. It is important to realise that the isomorphism B ∼= A⊕C depends
on the choice of the splitting map h. More formally3, this means that the splitting
is not natural. Moreover the converse to Proposition 12.16 is not true, as you will
show on Problem Sheet F.

The next idea is more important than it looks at first glance.

Definition 12.18. Let X be a non-empty topological space and let {∗} be a topolog-
ical space with one point. Let j : X → {∗} be the unique continuous map that sends
every point inX to ∗. For any map i : {∗} → X we have j◦i = id{∗}. Thus the induced

map Hn(j) : Hn(X)→ Hn(∗) is always surjective. We define H̃0(X) := kerH0(j) and
call it the zeroth reduced homology group. This gives us a short exact sequence:

0→ H̃0(X)→ H0(X)
H0(j)−−−→ H0(∗)→ 0.

Since this sequence splits (via H0(i)), we have

H0(X) ∼= H̃0(X)⊕ Z,

but this splitting is not natural, since it depends on the choice of map i.

Remark 12.19. Under the identification H0(∗) ∼= Z given by

m〈∗〉 7→ m, m ∈ Z,

the map H0(j) : H0(X)→ H0(∗) can be identified with the map φ from (8.3). Indeed,
if c =

∑
mx x ∈ Z0(X) represents a homology class 〈c〉 ∈ H0(X), then

H0(j)〈c〉 =
∑

mx j(x) =
(∑

mx

)
〈∗〉 ∈ H0(∗),

and hence the map H0(j) sends
∑
mx x 7→

∑
mx, which is exactly how φ was defined

in (8.3).

3We will define this properly in Lecture 22.
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We now extend H̃n to all n by simply setting H̃n(X) := Hn(X) for n ≥ 1, and
call H̃•(X) the reduced homology groups of X. We then have:

Corollary 12.20. If X is a non-empty contractible space then H̃n(X) = 0 for all
n ≥ 0.

On Problem Sheet F you will show that the long exact sequence for pairs works
for reduced homology too:

Proposition 12.21. Let ∅ 6= X ′ ⊆ X. There is an exact sequence

· · · → H̃n(X ′)→ H̃n(X)→ Hn(X,X ′)→ H̃n−1(X ′)→ . . .

which ends with H̃0(X ′)→ H̃0(X)→ H0(X,X ′)→ 0.

Corollary 12.22. If p ∈ X then H̃n(X) ∼= Hn(X, p) for all n ≥ 0.

Remark 12.23. In Corollary 12.22 we can be slightly more explicit. Let us take
our one point space {∗} to be {p} itself. Then there is an “obvious” choice of map
p→ X, namely the inclusion. This will be important later.

Remark 12.24. Remark 12.19 allows us to see the reduced homology groups as the
homology groups of a chain complex. Let X be a non-empty topological space and
define a chain complex

(
C̃•(X), ∂̃

)
by setting:

C̃n(X) :=


Cn(X), n ≥ 0,

Z, n = −1.

0, n ≤ −2,

and for n ≥ 1, define ∂̃ : C̃n(X) → Cn−1(X) to be the normal boundary operator,
and for n = 0, set

∂̃ : C̃0(X)→ Z = C̃−1(X), ∂̃

(∑
x

mx x

)
7→
∑
x

mx.

Then by Remark 12.19, one has

Hn

(
C̃•(X), ∂̃

) ∼= H̃n(X), ∀n ≥ 0.

This will be important next lecture in Corollary 13.3.

Our first “real” use of the reduced homology groups will come in Lecture 15
when we finally compute the homology of Sn (it will turn out it is more convenient
to compute H̃•(S

n) using induction.) In Lecture 19, we will prove that if a pair
(X,X ′) is sufficiently “nice” then

Hn(X,X ′) ∼= H̃n(X/X ′), (12.1)

where X/X ′ is the quotient space obtained by collapsing X ′ to a point (Corollary
12.22 is a special case of (12.1).)

We conclude this lecture by defining the homotopy version of Top2.
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Definition 12.25. If f, g : (X,X ′)→ (Y, Y ′) are maps of pairs then we say f ' g mod
X ′ if there exists a continuous map F : (X×I,X ′×I)→ (Y, Y ′) with F (x, 0) = f(x)
and F (x, 1) = g(x) for all x ∈ X.

This notion is not the same as saying f ' g rel X ′, since the definition does not
require f |X′ = g|X′ and that F (x′, t) is independent of t for all x′ ∈ X ′. This relation
defines a congruence on Top2 and thus yields a new category, hTop2. Moreover Hn

induces a functor Hn : hTop2 → Ab thanks to the following result.

Theorem 12.26 (The homotopy axiom for pairs). If f, g : (X,X ′) → (Y, Y ′) are
maps of pairs such that f ' g mod X ′ then for all n ≥ 0,

Hn(f) = Hn(g) : Hn(X,X ′)→ Hn(Y, Y ′).

The proof is analogous to the proof of the homotopy axiom (Theorem 8.9) and I
won’t bore you with it again.
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LECTURE 13

Barycentric subdivision

In this lecture we give a systematic way of chopping up a singular simplex into a
bunch of smaller ones. This process, known as barycentric subdivision, is interesting
in its own right (we will use it to give another proof that a convex space has zero
reduced homology), but for us the main application will be in the proof of excision
that we will carry out next lecture.

Definition 13.1. Let D be a bounded convex subset of some Euclidean space. Fix
a point p ∈ D, and suppose σ : ∆n → D is a singular n-simplex. We define the cone
over σ with vertex p to be the singular (n+1)-simplex Q(p, σ) : ∆n+1 → D defined
by

Q(p, σ)(s0, s1, . . . , sn+1) :=

{
p, s0 = 1,

s0p+ (1− s0)σ
(

s1
1−s0 , . . . ,

sn+1

1−s0

)
, s0 6= 1.

This is well defined because if s0 6= 1 then 1
1−s0

∑n+1
i=1 si = 1, and it is easy to check

that Q(p, σ) is continuous and takes values in D by convexity.

We extend this by linearity to a map Cn(D) → Cn+1(D), which we write as
c 7→ Q(p, c).

Proposition 13.2. If c =
∑
mi σi ∈ Cn(D) then

∂Q(p, c) =

{
c−Q(p, ∂c), if n > 0,

c− (
∑
mi) p, if n = 0.

Proof. If n ≥ 1 and i = 0 then

Q(p, σ) ◦ εn+1
0 (s0, . . . , sn) = Q(p, σ)(0, s0, . . . , sn) = σ(s0, . . . , sn),

and if 1 ≤ i ≤ n+ 1 then

Q(p, σ) ◦ εn+1
i (s0, . . . , sn) = Q(p, σ)(s0, . . . , si−1, 0, si, . . . , sn).

If s0 = 1 then this reduces to

Q(p, σ)(1, 0, . . . , 0) = p,

meanwhile if s0 6= 1 then we have

Q(p, σ) ◦ εn+1
i (s0, . . . , sn) = s0p+ (1− s0)σ

(
s1

1− s0
, . . . ,

si−1

1− s0
, 0,

si
1− s0

, . . . ,
sn

1− s0

)
= s0p+ (1− s0)σ ◦ εni−1

(
s1

1− s0
, . . . ,

sn
1− s0

)
= Q(p, σ ◦ εni−1)(s0, . . . , sn).
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Thus we see that for n ≥ 1,
Q(p, σ) ◦ εn+1

0 = σ (13.1)

and for i ≥ 1,
Q(p, σ) ◦ εn+1

i = Q(p, σ ◦ εni−1). (13.2)

Now taking alternating sums, we see that

∂Q(p, σ) =

n+1∑
i=0

(−1)iQ(p, σ) ◦ εn+1
i

(∗)
= σ +

n+1∑
i=1

(−1)iQ(p, σ ◦ εni−1)

= σ −
n∑
j=0

(−1)jQ(p, σ ◦ εnj )

= σ −Q

p, n∑
j=0

(−1)jσ ◦ εnj


= σ −Q(p, ∂σ),

where (∗) used (13.1) and (13.2). This proves the result in the case n ≥ 1. For n = 0,
it suffices to observe that if x is a point in X then Q(p, x) is a 1-simplex σ with
σ(e0) = p and σ(e1) = x. Thus ∂σ = σ(e1)− σ(e0) = x− p.

This gives us another direct proof of the fact that the reduced homology groups
of D vanish. (Of course, since D is contractible this already follows from Corollary
12.22.)

Corollary 13.3. Let D be a bounded convex subset of some Euclidean space. Then
the reduced homology groups vanish: H̃n(D) = 0 for all n ≥ 0.

Proof. The operator c 7→ Q(p, c) is a contracting homotopy for the chain complex
C̃•(D) defined in Remark 12.24. Thus by Corollary 10.26 we see that H̃n(D) = 0 for
all n ≥ 0.

Remark 13.4. Note that this proof did not use the homotopy axiom. We will use
this fact in Lecture 23 when giving an alternative proof of the homotopy axiom using
the Acyclic Models Theorem (if Corollary 13.3 used the homotopy axiom then our
argument would be circular).

We now introduce the concept of an affine simplex.

Definition 13.5. Let D be convex. A singular n-simplex σ : ∆n → D is said to be
affine if

σ

(
n∑
i=0

si ei

)
=

n∑
i=0

si σ(ei), ∀ (s0, s1, . . . , sn) ∈ ∆n.

If σ is affine then ∂σ is also affine, and thus the space of affine singular n-simplices
defines a subcomplex of C•(D). We write this as Caffine

• (D). Note also that if σ is
affine then so is Q(p, σ) for any p ∈ D.
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Let us denote by bn := 1
n+1(e0 + e1 + · · · + en) the barycentre (cf. (7.1) of the

standard simplex ∆n. We now define the barycentric subdivision operator. We will
first define it for affine simplices in convex subsets, and then extend it to arbitrary
simplices and spaces.

Definition 13.6. Let D be convex. Define the convex barycentric subdivision

Sdcv
n : Caffine

n (D)→ Caffine
n (D)

inductively for an affine singular n-simplex σ : ∆n → D by

Sdcv
n (σ) :=

{
σ n = 0,

Q
(
σ(bn), Sdcv

n−1(∂σ)
)
, n ≥ 1,

and then extending by linearity. See Figure 13.1 for a picture in the case n = 2.

Figure 13.1: The barycentric subdivision of ∆2.

If X is an arbitrary topological space then this definition doesn’t make sense,
since we cannot apply the cone construction. Nevertheless, there is an easy way to
extend this. In the following, in order to minimise notational confusion, let us denote
by `n : ∆n → ∆n the identity map, thought of as a singular n-simplex in ∆n.

Definition 13.7. Let X be an arbitrary topological space. Define the barycentric
subdivision Sdn : Cn(X)→ Cn(X) by setting

Sdn(σ) := σ#

(
Sdcv

n (`n)
)
,

and then extending by linearity.

This makes sense. The simplex `n is certainly affine, and hence Sdcv
n (`n) is well-

defined and belongs to Caffine
n (∆n) ⊂ Cn(∆n). Since σ# is a map Cn(∆n)→ Cn(X),

we see that σ#

(
Sdcv

n (`n)
)

does indeed belong to Cn(X).
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Lemma 13.8. If D is a convex bounded subset of some Euclidean space then Defini-
tion 13.7 agrees with Definition 13.6 for all affine simplices:

Sdn(σ) = Sdcv
n (σ), ∀σ : ∆n → D affine.

The proof of Lemma 13.8 is on Problem Sheet G. Moreover on Problem Sheet G
you are asked to write out explicit formulae for Sdn for n = 0, 1, 2.

Proposition 13.9. The barycentric subdivision is a chain map. Moreover if f : X →
Y is continuous then the following diagram commutes for all n ≥ 0:

Cn(X) Cn(Y )

Cn(X) Cn(Y )

f#

Sdn Sdn

f#

(13.3)

Remark 13.10. The fact that the diagram (13.3) commutes means that Sdn is a
natural chain map, anticipating terminology will we introduce later on in the course.

Proof. We begin by showing that (13.3) commutes:

f#Sdn(σ) = f#σ#Sdcv
n (`n) = (f ◦ σ)#Sdcv

n (`n) = Sdn(f ◦ σ) = Sdn(f#σ).

Assume now that X is a bounded convex subset of some Euclidean space. Let us
prove by induction on n that Sdn is a chain map. By Lemma 13.8, it suffices to show
that Sdcv

n is a chain map. The case n = 0 is obvious. For the inductive step we
compute

∂Sdcv
n (σ) = ∂Q

(
σ(bn),Sdcv

n−1(∂σ)
)

(∗)
= Sdcv

n−1(∂σ)−Q
(
σ(bn), ∂Sdcv

n−1(∂σ)
)

(†)
= Sdcv

n−1(∂σ)−Q
(
σ(bn),Sdcv

n−2(∂2σ︸︷︷︸
=0

)
)

= Sdcv
n−1(∂σ),

where (∗) used Proposition 13.2 and (†) used the inductive hypothesis1. We now
prove the general case where X is not necessarily convex. If σ : ∆n → X we have

∂Sdn(σ) = ∂σ#Sdcv
n (`n)

(‡)
= σ#∂Sdcv

n (`n)

(♠)
= σ#Sdcv

n−1(∂`n)

(♣)
= σ#Sdn−1(∂`n)

(♥)
= Sdn−1(σ#∂(`n))

(‡)
= Sdn−1(∂σ#(`n))

= Sdn−1(∂σ),

where:

1To make the case n = 1 work, we can take Sdcv
−1 to be the zero map.
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1. (‡) used that σ# is a chain map (both times),

2. (♠) used that we already know that convex barycentric subdivision is a chain
map,

3. (♣) used the fact that for the affine simplex ∂`n in the convex set ∆n one has
Sdn−1(∂`n) = Sdcv

n−1(∂`n),

4. (♥) used naturality (13.3),

5. and the last line used the fact that

σ#(`n) = σ. (13.4)

This completes the proof.

Now that we know that barycentric subdivision is a chain map, we get an induced
map on homology. What could this map be? The answer is about as boring as it can
be (it shows we have accomplished nothing!), but this will be crucial in the proof of
excision next lecture.

Theorem 13.11. For each n ≥ 0, the induced map

Hn(Sd) : Hn(X)→ Hn(X)

is the identity.

Remark 13.12. Just as with Proposition 8.5, the fact that barycentric subdivision
induces the identity on homology is also an immediate consequence of the Acyclic
Models Theorem that we will prove later on in the course. However for complete-
ness we will give an independent proof here.

Proof. It suffices by Proposition 10.24 to construct a chain homotopy between Sd
and the identity. In other words, we need to build map Pn : Cn(X)→ Cn+1(X) such
that

∂Pn + Pn−1∂ = id− Sdn. (13.5)

We prove the result in two steps.
1. We begin in the convex case with affine simplices. Assume D is a bounded

convex subset of some Euclidean space. We define inductively:2

P cv
n (σ) :=

{
0 n = 0,

Q
(
σ(bn), σ − Sdcv

n (σ)− P cv
n−1(∂σ)

)
, n ≥ 1,

Then P cv
n (σ) ∈ Caffine

n+1 (D) by induction. Let us verify inductively that (13.5) holds.
Since Sdcv

0 (σ) = σ for an (affine) 0-simplex, both sides of (13.5) are zero for n = 0.
Now suppose n > 0 and that (13.5) holds for n− 1, that is:

∂P cv
n−1 + P cv

n−2∂ = id− Sdcv
n−1. (13.6)

2P cv
−1 is also the zero map; there is no choice about that!
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Let σ : ∆n → D be an affine singular n-simplex. Then

∂
(
σ − Sdcv

n (σ)− P cv
n−1(∂σ)

) (†)
= ∂σ − ∂Sdcv

n (σ)− (id− Sdcv
n−1 − P cv

n−2∂)∂σ

(‡)
= −∂Sdcv

n (σ) + Sdcv
n−1(∂σ)

= 0,

where this time (†) used (13.6) and (‡) used that Sdcv is a chain map and ∂2 = 0.
Thus from Proposition 13.2 we have that

∂P cv
n (σ) = σ − Sdcv

n (σ)− P cv
n−1(∂σ),

and hence (13.5) holds.
2. Now we prove the general case. The strategy is the same as the definition of

Sd and the proof of Proposition 13.9. Using that `n is an affine n-simplex, given a
singular n-simplex σ : ∆n → X, we define

Pnσ := σ#(P cv
n (`n)) ∈ Cn+1(X).

Just as with Lemma 13.8, if X was already convex and σ was affine, we have Pn(σ) =
P cv
n (σ). We claim that this map Pn is “natural”, that is, if f : X → Y is any

continuous map, then the following commutes:

Cn(X) Cn(Y )

Cn+1(X) Cn+1(Y )

f#

Pn Pn

f#

(13.7)

Indeed,

f#Pnσ = f#σ#(P cv
n (`n)) = (f ◦ σ)#(P cv

n (`n)) = Pn(f ◦ σ) = Pn(f#σ).

Then using (13.7) and arguing as in the proof of Proposition 13.9, we have

∂Pn(σ) = σ#

(
∂P cv

n (`n)
)

(13.8)

and
Pn−1(∂σ) = σ#

(
P cv
n−1(∂`n)

)
(13.9)

and thus adding (13.8) and (13.9) together and using the fact that we already know
that (13.5) holds for P cv

n , we see that

∂Pn(σ) + Pn−1∂σ = σ#

(
∂P cv

n (`n) + P cv
n−1(∂`n)

)
= σ#

(
`n − Sdcv

n (`n)
)

= σ − Sdn(σ),

where we used (13.4) again in the last equality.
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LECTURE 14

Excision and the homology of spheres

In this lecture we state and prove the excision axiom. This is the last of the four
major axioms needed to define a homology theory. Thus by the end of this lecture
we will have proved (using terminology we will introduce in Lecture 22) that singular
homology is a homology theory. We use this to prove the Mayer-Vietoris sequence
and to compute the homology of spheres.

Given a set U ⊆ X of a topological space, we denote by U◦ the interior of U .

Definition 14.1. Let X be a topological space and let U be a family of subsets of
X such that

X =
⋃
U∈U

U◦.

We say a singular n-simplex σ : ∆n → X is U-small if there exists U ∈ U such that
σ(∆n) ⊆ U . We denote by CU

• (X) the subcomplex of C•(X) generated by U-small
simplices (it is clear this is a subcomplex.) We denote by HU

• (X) the homology of
this chain complex.

There is an obvious chain map i : CU
• (X)→ C•(X) given by inclusion. The main

technical result we prove today is that this chain map induces an isomorphism on
homology.

Theorem 14.2. The inclusion of chain complexes i : CU
• (X) → C•(X) induces an

isomorphism HU
n (X)→ Hn(X) for all n ≥ 0.

We will need a few preliminary results. The next two pertain to genuine simplices
(not singular simplices!).

Proposition 14.3. Let S = [z0, z1, . . . , zn] denote an n-simplex in some Euclidean
space. Then if x, y ∈ S one has

|x− y| ≤ sup
i
|zi − y|, (14.1)

and hence
diamS = max

i,j
|zi − zj |. (14.2)

Moreover if b is the barycentre of S then

|b− zi| ≤
n

n+ 1
diamS (14.3)
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Proof. Let x, y ∈ S, and write x =
∑

i si zi with
∑

i si = 1. Then

|x− y| =

∣∣∣∣∣∑
i

si zi − y

∣∣∣∣∣ ≤∑
i

si|zi − y| ≤ max
i
|zi − y|

This proves (14.1), and (14.2) is an immediate consequence of this. Now since b =
1

n+1

∑
i zi we have

|b− zj | =

∣∣∣∣∣
(∑

i

1

n+ 1
zi

)
− zj

∣∣∣∣∣
(∗)
=

∣∣∣∣∣∑
i

1

n+ 1
(zi − zj)

∣∣∣∣∣
≤ 1

n+ 1

∑
i

|zi − zj |

≤ n

n+ 1
max
i,j
|zi − zj |

=
n

n+ 1
diamS,

where (∗) used the fact that
∑n

i=0
1

n+1 = 1. This proves (14.3).

We can regard any genuine simplex [z0, z1, . . . , zn] as a singular n-simplex by
choosing σ : ∆n → [z0, z1, . . . , zn] to be an affine map sending ei to zi (cf. Problem
D.4). Thus if Si are genuine n-simplices in some convex subset D and mi are non-zero
integers, we can regard

∑
imi Si as belonging to Cn(D) (actually, to Caffine

n (D).) We
define the mesh of such a sum to the maximum diameter of the Si.

In particular, if S is an n-simplex then Sdcv
n (S) is an element of Cn(D), and we

have:

Corollary 14.4. For any n-simplex S,

mesh Sdcv
n (S) ≤ n

n+ 1
diamS.

This allows us to prove the following result, which tells us that we can make
any singular simplex into a sum of U-small simplices by barycentrically subdividing
enough times.

Proposition 14.5. Let X be a topological space and let U be a family of subsets of
X whose interiors cover X. Let σ : ∆n → X be a singular n-simplex. There exists
k ∈ N such that every simplex in the n-chain Sdkn(σ) is U-small.

Proof. Let δ > 0 be a Lebesgue number (cf. Lemma 6.7) for the open covering
{σ−1(U◦) | U ∈ U} of ∆n. Choose k ∈ N large enough so that(

n

n+ 1

)k
<

δ√
2
.

The claim now follows from Corollary 14.4 and induction.
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With these preliminaries out of the way, we can now prove Theorem 14.2.

Proof of Theorem 14.2. Let n ≥ 0. We first prove Hn(i) : HU
n (X) → Hn(X) is in-

jective. Suppose c ∈ ZU
n (X) belongs to the kernel of Hn(i). This means there

exists a ∈ Cn+1(X) such that ∂a = i#c = c. By applying Proposition 14.5 to
each of the finitely many simplices in a, we see there exists k ∈ N such that
Sdkn+1(a) ∈ CU

n+1(X). Recall Theorem 13.11 gives us a chain homotopy P from
Sd to the identity: ∂P + P∂ = Sd− id. By induction, for any positive integer k we
have

∂PSdk−1 + PSdk−1∂ = Sdk − Sdk−1.

Thus if we set
P (k) := P ◦

(
id + Sd + · · ·+ Sdk−1

)
then we have

∂P (k) + P (k)∂ = Sdk − id.

Thus
Sdkn+1(a)− a = ∂P

(k)
n+1(a) + P (k)

n (∂a) = ∂P
(k)
n+1(a) + P (k)

n (c),

and hence as ∂2 = 0 we have

c = ∂a = ∂
(
Sdkn+1(a)− P (k)

n (c)
)
.

Since c ∈ CU
n (X) we have P

(k)
n (c) ∈ CU

n+1(X) as well; this can be seen from the

naturality equation (13.7). Thus as Sdkn+1(a) also belongs to CU
n+1(X), we see that

c ∈ BU
n(X). Hence Hn(i) is injective.

Now we prove Hn(i) is surjective. Suppose d ∈ Zn(X). Then using Proposition
14.5 for k large enough we have Sdkn(d) ∈ CU

n (X). With P (k) as before we have

Sdkn(d)− d = ∂P (k)
n (d) + P

(k)
n−1(∂d) = ∂P (k)

n (d).

Since Sdk is a chain map, Sdkn(d) is also a cycle. The previous equation thus shows
that d is homologous to a cycle in CU

n (X). This shows that Hn(i) is surjective, and
hence completes the proof.

Now let (X,X ′) be a pair of spaces. Write

U ∩X ′ := {U ∩X ′ | U ∈ U},

and define the chain complex

CU
• (X,X ′) := CU

• (X)
/
CU∩X′
• (X ′).

We denote its homology groups by HU∩X′
n (X,X ′). This gives us a commutative

diagram of chain complexes with exact rows:

0 CU∩X′
• (X ′) CU

• (X) CU
• (X,X ′) 0

0 C•(X
′) C•(X) C•(X,X

′) 0
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Each row has its own long exact sequence, giving the following commutating diagram:

. . . HU∩X′
n (X ′) HU

n (X) HU∩X′
n (X,X ′) HU∩X′

n−1 (X ′) . . .

. . . Hn(X ′) Hn(X) Hn(X,X ′) Hn−1(X ′) . . .

j

All the vertical maps apart from the one marked j are isomorphisms, thanks to
Theorem 14.2. But now by the Five Lemma (Proposition 11.3), we see that j is also
an isomorphism. This proves:

Proposition 14.6. The inclusion of chain complexes CU
• (X,X ′) → C•(X,X

′) in-
duces an isomorphism in homology:

HU∩X′
n (X,X ′) ∼= Hn(X,X ′), ∀n ≥ 0.

We now state two forms of excision.

Theorem 14.7 (The excision axiom). Assume that X ′′ ⊂ X ′ ⊂ X are subspaces
with X ′′ ⊂ (X ′)◦. Then the inclusion (X \ X ′′, X ′ \ X ′′) ↪→ (X,X ′) induces an
isomorphism in homology:

Hn(X \X ′′, X ′ \X ′′) ∼= Hn(X,X ′), ∀n ≥ 0.

Theorem 14.8 (The excision axiom, second form). Assume that X1, X2 are sub-
spaces of X such that X = X◦1 ∪X◦2 . Then the inclusion (X1, X1 ∩X2) ↪→ (X,X2)
induces an isomorphism in homology:

Hn(X1, X1 ∩X2) ∼= Hn(X,X2), ∀n ≥ 0.

On Problem Sheet G you will show that the two results Theorem 14.7 and The-
orem 14.8 are equivalent. Here we will prove the second one.

Proof of Theorem 14.8. We take as our covering U = {X1, X2}. The hypotheses of
Theorem 14.2 are satisfied. By definition we have

CU
• (X) = C•(X1) + C•(X2),

and hence if we look at long exact sequence in homology associated to the short exact
sequence of chain complexes:

0→
(
C•(X1) + C•(X2)

)
f−→ C•(X)→ C•(X)

/(
C•(X1) + C•(X2)

)
→ 0,

every third map

Hn(f) : Hn

(
C•(X1) + C•(X2)

)
→ Hn

(
C•(X)

)
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is an isomorphism1 by Theorem 14.2. Now we consider the short exact sequence of
chain complexes:

0→ C•(X1) + C•(X2)

C•(X2)

g−→ C•(X)

C•(X2)
→ C•(X)

C•(X1) + C•(X2)
→ 0.

The corresponding long exact sequence has every third term zero, so that Hn(g) is an
isomorphism for every n. Next observe there is an isomorphism of chain complexes:

h :
C•(X1)

C•(X1 ∩X2)
∼=
C•(X1) + C•(X2)

C•(X2)
.

This is just the fact that

C•(X1 ∩X2) = C•(X1) ∩ C•(X2),

together with the second isomorphism theorem for chain complexes, which is
Problem G.6. We thus have a commuting triangle of chain complexes:

C•(X1)

C•(X1 ∩X2)

C•(X)

C•(X2)

C•(X1) + C•(X2)

C•(X2)

h g

The induced maps Hn(h) and Hn(g) are both isomorphisms, and hence the horizontal
map also induces an isomorphism in homology:

Hn

(
C•(X1)

C•(X1 ∩X2)

)
∼= Hn

(
C•(X)

C•(X2)

)
, ∀n ≥ 0.

This is exactly the statement of the theorem.

We now prove the “homology” version of the Seifert-van Kampen Theorem 6.5,
which is a simple consequence of excision.

Theorem 14.9 (Mayer-Vietoris). Let X1 and X2 be subspaces of X such that X =
X◦1 ∪X◦2 . Set X0 := X1 ∩X2 and let

ıi : X0 ↪→ Xi, i : Xi ↪→ X

denote inclusions for i = 1, 2. Then there is a long exact sequence

. . . Hn(X0)
(Hn(ı1),Hn(ı2))−−−−−−−−−−→ Hn(X1)⊕Hn(X2)

Hn(1)−Hn(2)−−−−−−−−−→ Hn(X)
D−→ Hn−1(X0)→ . . .

1If one has a long exact sequence

· · · → An
fn−→ Bn → Cn → An−1

fn−1−−−→ Bn−1 → . . .

where every third map fn : An → Bn is an isomorphism, then Cn = 0 for all n by exactness.
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Proof. The following diagram of pairs of spaces commutes, where all the maps are
inclusions2:

(X0, ∅) (X1, ∅) (X1, X0)

(X2, ∅) (X, ∅) (X,X2)

ı1

ı2

f

1 h

2 g

By Problem F.4 we obtain a commutative diagram with exact rows:

. . . Hn(X0) Hn(X1) Hn(X1, X0) Hn−1(X0) . . .

. . . Hn(X2) Hn(X) Hn(X,X2) Hn−1(X2) . . .

Hn(ı1)

Hn(ı2)

Hn(f)

Hn(1)

δ

Hn(h) Hn(ı2)

Hn(2) Hn(g) δ

Now Theorem 14.8 tells us that the map Hn(h) is an isomorphism for all n. This
means that we can apply the Barratt-Whitehead Lemma (Proposition 11.4) to obtain
the desired long exact sequence.

Provided X0 is non-empty, the Mayer-Vietoris Theorem continuous to hold for
reduced homology as well.

Corollary 14.10. Let X1 and X2 be subspaces of X such that X = X◦1 ∪X◦2 . Set
X0 := X1 ∩X2 and assume X0 6= ∅. Then there is a long exact sequence

. . . H̃n(X0)→ H̃n(X1)⊕ H̃n(X2)→ H̃n(X)→ H̃n−1(X0)→ . . .

where the maps are the same as in Theorem 14.9. The sequence ends with

. . . H̃0(X1)⊕ H̃0(X2)→ H̃0(X)→ 0.

Proof. Fix p ∈ X0 and proceed as before, starting with the commutative diagram

(X0, p) (X1, p) (X1, X0)

(X2, p) (X, p) (X,X2)

This gives the desired long exact sequence, albeit with Hn(X, p) in place of H̃n(X),
etc. However Corollary 12.22 then completes the proof.

We can now finally compute the homology of the sphere. We will state the result
for reduced homology, because this is a neater statement and the proof is shorter.

Theorem 14.11. For all n ≥ 0, one has

H̃k(S
n) =

{
Z, k = n,

0, k 6= n.

2We identify eg. ı1 : X0 ↪→ X1 with the map of pairs (X0, ∅) ↪→ (X1, ∅).
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Proof. We induct on n. For n = 0 this follows from the definition of reduced homol-
ogy, the dimension axiom (Proposition 8.1), and Proposition 8.3), since S0 = {−1, 1}
is a space consisting of two points. For the inductive step, we apply Corollary 14.10.
Suppose n ≥ 1, and let p and q denote the “north pole” and “south pole” of Sn re-
spectively. Set X1 = Sn \ {p} and X2 := Sn \ {q}. Then X1 and X2 are contractible
and X1 ∩X2 is homotopy equivalent to the “equator” Sn−1. Using Corollary 12.20,
the Mayer-Vietoris sequence gives us for all i ≥ 0 an exact sequence

0→ H̃k(S
n)→ H̃k−1(Sn−1)→ 0.

The result follows by induction.

Just as with the Seifert-van Kampen Theorem 6.5, the Mayer-Vietoris exact se-
quence allows us to compute the homology of a number of standard spaces. We will
return to this in Lecture 18, when we discuss the idea of attaching cells.

Remark 14.12. In particular, Hn(Sn) = Z 6= 0. Thus we have finally proved Lemma
1.3 from Lecture 1, and thus we have also finally proved the Brouwer Fixed Point
Theorem 1.1.
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LECTURE 15

The degree

In this lecture we define the degree of a continuous map from a sphere to itself. Recall
in Lecture 5 we defined the degree of a loop u : (I, ∂I)→ (S1, 1). From Problem B.5,
we have π1(S1, 1) ∼= [(S1, 1), (S1, 1)], and hence our earlier definition can be thought
of as a map [(S1, 1), (S1, 1)] → Z. In this lecture we will work with homology, and
thus it is convenient to ditch the basepoints. This means we need a stronger version
of Problem B.5.

Proposition 15.1. Let X be path connected and let ζ : π1(X, p) → [S1, X] be the
function that sends a path class [u] to the free homotopy class of the map û : S1 → X
given by

û(e2πis) := u(s), s ∈ I.

This function is surjective. Moreover if ζ([u]) = ζ([v]) then there exists [w] ∈ π1(X, p)
such that [u] = [w] ∗ [v] ∗ [w]−1. In particular, if π1(X, p) is abelian then ζ is an
isomorphism, and hence π1(X, p) ∼= [S1, X].

The proof of Proposition 15.1 is on Problem Sheet H as a test to see whether
you’ve already forgotten all the homotopy theory we did...

Taking X = S1, and using that π1(S1) = Z is abelian, this shows that our earlier
definition of the degree (Definition 5.5) can be thought of as a map [S1, S1] → Z.
We now use take advantage of the fact that Hn(Sn) = Z to extend this to higher-
dimensional spheres using homology.

We will use the following simple observation: any group homomorphism ϕ : Z→
Z is necessarily multiplication by an integer, that is, ϕ(n) = mn for some m ∈ Z.
Indeed, if m = ϕ(1) then

ϕ(n) = ϕ(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = ϕ(1) + · · ·+ ϕ(1)︸ ︷︷ ︸
n times

= n · ϕ(1) = nm.

Definition 15.2. Let n ≥ 1 and let f : Sn → Sn be continuous. ThenHn(f) : Hn(Sn)→
Hn(Sn) is a group homomorphism, and hence is multiplication by an integer. This
integer is called the degree of f and denoted by deg(f). Thus

Hn(f)〈c〉 = deg(f)〈c〉, ∀ 〈c〉 ∈ Hn(Sn).

The homotopy axiom (Theorem 8.9) implies that deg : [Sn, Sn] → Z is a well
defined function, since if f ' g are homotopic maps from Sn to itself then Hn(f) =
Hn(g) and thus in particular deg(f) = deg(g).

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Let us check that for S1, this definition agrees with the old one. For clarity,
since there are now (supposedly) three different definitions of “degree” in play, let us
temporarily give them all different names. Firstly we have

degloop : π1(S1, 1)→ Z,

the one from Theorem 5.6. Secondly, we have

degold : [S1, S1]→ Z,

the one obtained from degloop using Proposition 15.1, and finally the function

degnew : [S1, S1]→ Z,

given from Definition 15.2. Of course degloop and degold are the same map, but in
the proof of the next proposition it is convenient to keep the notation distinct.

Proposition 15.3. Let f : S1 → S1 be continuous. Then the homomorphism π1(f)
is given by mulitplication by degold(f).

Proof. Let uk(s) := e2πiks for k ∈ N. Then from the proof of Theorem 5.6, degloop[uk] =
k, and thus [u1] is a generator of π1(S1, 1). Consider now first the special case where
f = gm for gm(z) := zm. Since gm ◦ u1 = um we see that π1(gm)[u1] = [um]. Thus
π1(gm) is given by multiplication by m under the identification π1(S1, 1) ∼= Z given
by degloop.

For the general case, suppose f : S1 → S1 has degold(f) = m. Then f ' gm
since degold is an isomorphism by Theorem 5.6 and Proposition 15.1. Since π1(S1)
is abelian, Corollary 4.14 shows that π1(f) = π1(gm). This completes the proof.

We now prove that actually degold = degnew.

Proposition 15.4. If f : S1 → S1 is continuous then degold(f) = degnew(f)

Proof. By Problem E.2, there is a commutative diagram

π1(S1, 1) π1(S1, 1)

H1(S1) H1(S1)

π1(f)

h h

H1(f)

where h : π1(S1, 1)→ H1(S1) is the Hurewicz map. Since π1(S1, 1) = Z is abelian, the
map h is an isomorphism, and degloop furnishes an explicit isomorphism π1(S1, 1) ∼=
H1(S1) ∼= Z. Now the result follows from Proposition 15.3.

With this out the way, we will go back to just calling all three of the maps deg.

Proposition 15.5. Let n ≥ 1 and let f, g : Sn → Sn denote continuous maps. Then:

1. deg(g ◦ f) = deg(g)deg(f),

2. deg(idSn) = 1,

2



3. if f is a constant map then deg(f) = 0,

4. if f ' g then deg(f) = deg(g),

5. if f is a homotopy equivalence then deg(f) = ±1.

Proof. All properties follow from the fact that Hn is a functor. Property (3) follows
from the fact that a constant map f can be factored as a composition Sn → {∗} → Sn

where {∗} is a one-point space.

We now prove a far less obvious result.

Proposition 15.6. Let n ≥ 1 and let A ∈ O(n + 1) denote an orthogonal linear
transformation. Set f := A|Sn . Then deg(f) = det(A).

Proof. The group O(n+1) has two connected components, distinguished by det : O(n+
1) → {+1,−1}. By homotopy invariance it suffices to check the result for one such
A in each component. Since the identity matrix In+1 induces f = idSn , which has
degree 1, it suffices to check the result for a single map A with det(A) = −1. We
take A to be reflection in a hyperplane H ⊂ Rn+1. Divide Sn into two hemispheres
that are preserved by A. Then the map f induces a reflection f ′ in the corresponding
hyperplane H ′ in the equatorial Sn−1. Now applying the Mayer-Vietoris sequence
and using naturality, we obtain the following commutative diagram:

Hn(Sn) Hn−1(Sn−1)

Hn(Sn) Hn−1(Sn−1)

Hn(f)

D

Hn−1(f ′)

D

Here the maps D are the connecting maps from the Mayer-Vietoris sequence. These
maps are isomorphisms, moreover they are the same isomorphism. Thus we see that

deg(f) = deg(f ′),

and hence by induction it suffices to prove the result for n = 1. For this we write
S1 as the union of two open intervals A and B which contract onto the two given
hemispheres preserved by our reflection. Then A ∩ B is homotopy equivalent to
S0 = {p, q}. Applying Mayer-Vietoris again, we see that H1(S1) is isomorphic to the
kernel of the map j:

0→ H1(S1)→ H0(S0)
j−→ H0(A)⊕H0(B).

We take 〈p〉 and 〈q〉 as generators of H0(S0). Both 〈p〉 and 〈q〉 generate H0(A) and
H0(B) (cf. the last part of Proposition 8.3), and thus the map j here

0→ H1(S1)→ Z⊕ Z j−→ Z⊕ Z

is given by (u, v) 7→ (u + v, u + v). In particular, the kernel of j is generated by
〈p〉 − 〈q〉. Since the reflection f interchanges p and q, this shows that deg(f) = −1
as claimed.
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Corollary 15.7. Let n ≥ 1. The antipodal map a : Sn → Sn given by a(x) = −x
has degree (−1)n+1.

Proof. The antipodal map is the composition of the n + 1 reflections in the coor-
dinates axes of Rn+1. These all have degree −1 by Proposition 15.6, and degree is
multiplicative by part (1) of Proposition 15.5.

This immediately gives a proof of the following famous result.

Theorem 15.8 (The Hairy Ball Theorem). There exists a nowhere vanishing vector
field on Sn if and only if n is odd.

A vector field can be identified with a continuous map v : Sn → Rn+1 such that
〈x, v(x)〉 = 0, where 〈·, ·〉 is the Euclidean inner product on Rn+1. Rather more
visually, suppose we attach a “hair-vector” v(x) at every point x ∈ Sn. If we could
successfully “comb” the sphere so that every hair was tangential to Sn, we’d have
successfully created a vector field on Sn. Thus the theorem tells us that if we try
this on S2m, either there will be a point x where the sphere is bald (v(x) = 0), or no
matter how hard we try to comb, there will always be a tuft.

Proof. If n = 2m− 1 then define v : R2m → R2m by

v(x1, y1, . . . xm, ym) = (−y1, x1, . . . ,−ym, xm).

The restriction of v to Sn is then a nowhere vanishing vector field. Conversely,
suppose v is a nowhere vanishing vector field. Let w : Sn → Sn be defined by

w(x) =
v(x)

|v(x)|
.

Now define

W : Sn × I → Sn, W (x, t) := (cosπt)x+ (sinπt)w(x),

(this does indeed take values in Sn since 〈x, v(x)〉 = 0 for all x.) Then W (x, 0) = x
and W (x, 1) = a(x), where a is the antipodal map. Thus the degree of the antipodal
map is the same as the degree of the identity by part (4) of Proposition 15.5, and
thus by Corollary 15.7, we see that n must be odd.

Taking the earth to be S2 and our vector field to be the wind, the theorem can
also be interpreted as saying: There is always somewhere on planet where there is
no wind.

Lemma 15.9. Let n ≥ 1. Suppose f, g : Sn → Sn are continuous maps such that
f(x) 6= g(x) for all x ∈ Sn. Then f ' a ◦ g. In particular, if f has no fixed points
then f is homotopic to the antipodal map.

Proof. If f(x) 6= g(x) for all x then

F (x, t) :=
(1− t)f(x)− tg(x)

|(1− t)f(x)− tg(x)|

is a well-defined homotopy from f to a ◦ g (since the denominator can never be
zero.)
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We can use this lemma to obtain surprising information on what groups G can
act freely on S2n. First note that S2n−1 can be realised as the unit circle in Cn,
and thus carries a free action of S1; namely z 7→ eiθz. Inside S1 we then also have
free actions of the mth roots of unity on S2n−1, and thus Zm acts on S2n−1 for each
m ∈ N. The same however is not true for S2n.

Corollary 15.10. If G acts freely on S2n then G is either the trivial group or
G = Z2.

Proof. If G acts freely on S2n then each non-trivial element g ∈ G has no fixed
points. Thus each g has degree −1 by Lemma 15.9 and Corollary 15.7. Thus the
map deg : G→ Z2 = {+1,−1} is an injective group homomorphism.

We conclude this lecture with a much deeper result.

Definition 15.11. A continuous map f : Sn → Sn is called an odd map if f(−x) =
−f(x) for all x ∈ Sn. Equivalently, f ◦ a = a ◦ f , where a is the antipodal map.

Theorem 15.12. An odd map has odd degree.

As you will see on Problem Sheet H, Theorem 15.12 implies two classical theo-
rems, the Borsuk-Ulam Theorem and the Lusternik-Schnirelmann Theorem.
There are several ways to prove Theorem 15.12. We will give a proof that (mostly)
uses only material that we have covered so far. Alternative approaches use the Smith
Exact Sequence and homology with Z2-coefficients, or the ring structure of the co-
homology H•(RPn). These are topics we will cover in Algebraic Topology II next
semester.

Let us start with some notation. Let Bn
± denote the upper and lower hemispheres

of Sn, so that Bn
+ ∩ Bn

− is the equatorial Sn−1. This process can be iterated, so we
can see Si sitting inside Sn for all 0 ≤ i ≤ n. We will need the following result in
our proof of Theorem 15.12, which we can’t properly prove just yet.

Proposition 15.13. Let f : Sn → Sn be an odd map. Then there exists an odd map
f ′ : Sn → Sn such that f ′(Si) ⊆ Si for each i = 0, . . . , n and a homotopy F : f ' f ′

with the property that ft := F (·, t) is an odd map for each t ∈ I.

Sketch proof. Let p : Sn → RPn denote the projection map (see Example 18.8 in
Lecture 18). Since f is odd, there is an induced map h : RPn → RPn such that
h ◦ p = p ◦ f . Using the cellular structure of RPn and the Cellular Approxima-
tion Theorem (for the former, see Example 18.8 again, for the latter see Algebraic
Topology II), there exists a homotopy H : h ' h′ such that h′(RP i) ⊆ RP i for each
i = 0, 1, . . . , n. Now using the homotopy lifiting property (also in Algebraic
Topology II), we can lift H to a homotopy F : Sn × I → Sn. This means that

H(p(x), t)) = p(F (x, t)), ∀ (x, t) ∈ Sn × I (15.1)

(compare this to Proposition 5.2), and such that F (·, 0) is our original map f . The
map ft := F (·, t) is odd for each t by (15.1), and f ′ := f1 has the property that
f ′(Si) ⊆ Si for each i = 0, 1, . . . , n.
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Proposition 15.13 implies that we can prove Theorem 15.12 via the following
result. In the statement, it is convenient to formally define the degree of a map
f : S0 → S0 to be the the integer such that the induced map in reduced homology
H̃0(S0)→ H̃0(S0) is multiplication by this number.

Proposition 15.14. Let n ≥ 1 and let f : Sn → Sn denote an odd map such that
f(Si) ⊆ Si for each i = 0, 1, . . . , n. Then deg(f) has the same parity as deg(f |Sn−1).

Indeed, Theorem 15.12 immediately follows from this, since the only odd maps
S0 → S0 are the identity and the antipodal map itself, and these both have odd
degree. Indeed, if S0 = {p, q} then 〈p − q〉 is a generator of H̃0(S0). The identity
map induces 〈p− q〉 7→ 〈p− q〉, and the antipodal map induces 〈p− q〉 7→ −〈p− q〉.
Hence the degree is +1 or −1, and thus in particular is odd. (This also shows that
Corollary 15.7 also formally holds in the case n = 0.)

Proof of Proposition 15.14. Consider the following commuting hexagon (!):

H̃n(Sn)

Hn(Sn, Bn
+) Hn(Sn, Bn

−)

Hn(Sn, Sn−1)

Hn(Bn
−, S

n−1) Hn(Bn
+, S

n−1)

H̃n−1(Sn−1)

l+ l−

h

j+ j−

δ

k+

i−

δ+

k−

i+

δ−

We use reduced homology at the top and bottom only so the proof still works for
n = 1. Here the maps δ± and δ come from the long exact sequence for reduced
homology (Proposition 12.21), and all the other maps are induced by inclusions.
Moreover1:

1. All the groups apart from the middle one are isomorphic to Z.

2. The maps k±, l± and δ± are all isomorphisms.

3. Exactness holds at Hn(Sn, Sn−1) for all three diagonals: im i− = ker j− and
im i+ = ker j+ and imh = ker δ.

The notation in this proof is rather involved, so to simplify things, we will denote
homology classes just by letters c etc. (i.e. no angle brackets). The map f induces
maps

Hn(f) : H̃n(Sn)→ H̃n(Sn), Hn−1(f |Sn−1) : H̃n−1(Sn−1)→ H̃n−1(Sn−1),

1Consider it an exercise to verify all these claims!

6



and also (by assumption) a map Hn(Sn, Sn−1) → Hn(Sn, Sn−1). We will denote
them all by ϕ. Similarly we will denote by α all the maps on homology induced by
the antipodal map. This should not cause confusion.

Fix a generator c ∈ H̃n−1(Sn−1). This uniquely defines generators c± ∈ Hn(Bn
∓, S

n−1)
via the equation δ±(c±) = c. Moreover if b± := k±(c±) then b± are generators
of Hn(Sn, Bn

±), and there exist a± ∈ H̃n(Sn) such that l±(a±) = b±. Now set
u± := i∓(c±). Some diagram chasing tells us that {u+, u−} is a basis of Hn(Sn, Sn−1)
(see Problem H.2), and thus in particular

Hn(Sn, Sn−1) ∼= Z⊕ Z.

Let d := deg(f) and d′ := deg(f |Sn−1). Then by definition,

ϕa+ = da+, ϕc = d′c.

Since {u+, u−} is a basis of Hn(Sn, Sn−1), there exist integers p, q such that ϕ(u+) =
pu+ + qu−. To complete the proof, we will show that

d = p− q, d′ = p+ q.

Thus d′−d = 2q which is even. For this note that since δ(u±) = c by commutativity,

ϕ(c) = ϕ
(
δ(u+)

)
= δ
(
ϕ(u+)

)
= δ(pu+ + qu−) = (p+ q)c,

where we used naturality (the commuting diagram part of Proposition 12.3) for
ϕ ◦ δ = δ ◦ ϕ. Thus d′ = p+ q as claimed.

Now consider α. By naturality δ− ◦ α = α ◦ δ+, and Corollary 15.7 we have
α(c) = (−1)nc. Thus also α(c+) = (−1)nc− and α(u−) = (−1)nu+. Next, since f is
odd, ϕ ◦ α = α ◦ ϕ. Putting this together we see that

ϕ(u−) = (−1)nϕ
(
α(u+)

)
= (−1)nα

(
ϕ(u+)

)
= (−1)nα(pu+ + qu−) = pu− + qu+.

Next, since imh = ker δ, the image of h is generated by u+−u−. Thus h(a+) = r(u+−
u−) with r = ±1. In fact, we claim r = +1. For this we use that j+(u+) = l+(a+)
by definition, and hence

j+(u+) = l+(a+) = j+
(
h(a+)

)
= rj+(u+ − u−) = rj+(u+),

since u− ∈ im i+ = ker j+. Now we observe that by definition of d,

d(u+ − u−) = dh(a+)

= ϕ
(
h(a+)

)
= ϕ(u+ − u−)

= (pu+ + qu−)− (pu− + qu+)

= (p− q)(u+ − u−).

Thus d = p− q. This completes the proof.
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LECTURE 16

Colimits and filtered colimits

Let us now make good on the promise we made in Lecture 5 and formalise the notion
of a pushout.

Definition 16.1. Let J be a small category1. Let C be another category. A diagram
of shape J in C is simply a functor T : J→ C. We call J an index category.

This is easiest to parse with an example.

Example 16.2. Let J be a category with exactly three objects, {♥,♠,♦}, and assume
that there is unique morphism ♠ → ♥ and a unique morphism ♠ → ♦, and that the
only other morphisms are the identity morphisms (whose existence is forced). We
write this pictorially as

♠ ♥

♦
A functor T : J → C is the same thing as a triple of objects (A,B1, B2) in obj(C)
together with a choice of two morphisms f1 : A→ B1 and f2 : A→ B2.

♠ ♥

♦

apply the functor T
A B1

B2

f1

f2

This thus recovers what we called a “diagram” in C in Definition 5.7.

We now generalise the notion of a “solution” to a diagram. To help keep the
various objects distinct, we will usually use the letters α, β, γ to indicate objects of
our indexing category J.

Definition 16.3. Let J be an index category and let T : J → C be a diagram in
C. A solution2 for T is an object C of C together with a family of morphisms
cα : T (α)→ C in C for each object α ∈ obj(J) such that if i : α→ β is any morphism
in J then the following commutes:

T (α) C

T (β)

cα

T (i) cβ

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
1This means that obj(J) is a set. It does not necessarily imply that J is actually “small” (since sets

can be very large!) Nevertheless, in most our examples J is indeed rather small; for instance our running
example (Example 16.2) has J having three objects and two non-identity morphisms.

2This is usually called a “co-cone” but I prefer the name “solution”.
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We write (C, {cα}) to indicate the solution.

Example 16.4. Let us stick with the setup from Example 16.2. In this case a
solution is simply an object D of C together with three morphisms g = c♠ : A→ D,
g1 = c♥ : B1 → D and g2 = c♦ : B2 → D such that the following commutes:

A B1

B2 D

f1

f2
g

g1

g2

In fact, we don’t need to specify the morphism g, since the commutativity requirement
means that g = g1 ◦ f1 = g2 ◦ f2. So a solution is simply an object D of C together
with two morphisms g1 : B1 → D and g2 : B2 → D such that the following commutes:

A B1

B2 D

f1

f2 g1

g2

This recovers the notion of solution as given in Definition 5.7.

Now let us appropriately generalise the pushout construction.

Definition 16.5. Let J be an index category and let T : J → C be a diagram in C.
A colimit is a solution (L, {lα}) that satisfies the following universal property : if
(C, {cα}) is any other solution then there exists a unique morphism u : L→ C such
that the following diagram commutes for every morphism i : α→ β in J:

T (β)

T (α) L

C

lβ

cβ

T (i)

lα

cα

u

Example 16.6. Going back to Example 16.2, a colimit is simply a pushout in the
sense of Definition 5.7: a solution (L, l1, l2) such that for any other solution (D, g1, g2)
there is a unique map u : L→ D such that the following commutes:

A B1

B2 L

D

f1

f2 l1

g1

l2

g2

u

2



By now you should be completely happy with proving that colimits are unique if
they exist. But since I’m exceedingly generous, I will do it for you.

Lemma 16.7. Let J be an index category and let T : J → C be a diagram in C. If a
colimit exists then it is unique up to isomorphism.

Proof. If (L, {lα}) and (L′, {l′α}) are two limits then we get unique morphisms u : L→
L′ and u′ : L′ → L such that the following both commute for every morphism i : α→ β
in J:

T (β)

T (α) L

L′

lβ

l′β

T (i)

lα

l′α

u

T (β)

T (α) L′

L

l′β

lβ

T (i)

l′α

lα

u′

Then the composition u′ ◦ u : L → L and u ◦ u′ : L → L both make the following
diagrams commute:

T (β)

T (α) L

L

lβ

lβ

T (i)

lα

lα

u′◦u

T (β)

T (α) L′

L′

l′β

lβ

T (i)

l′α

lα

u◦u′

But since idL and idL′ also make these two diagrams commute respectively, we see
by uniqueness that u′ ◦ u = idL and u ◦ u′ = idL′ . This completes the proof.

We usually write colimT to indicate the colimit. This notation is somewhat
imprecise (as it should really include the maps lα), but we do it anyway.

Here is another example:

Example 16.8. Take J to have exactly two objects and no morphisms (apart from
the identity morphisms).

♠ ♥

Let T : J → Sets or T : J → Groups. This type of colimit is called a coproduct. In
the category Sets, it is simply the disjoint union T (♠) t T (♥). In the category of
groups it is the free product T (♠)∗T (♥) (cf. Problem C.1.) In general, the coproduct
(in an arbitrary category) C of two objects A and B is denoted by AtB (if it exists).

One can also use colimits to get the category theory analogue of an equivalence
relation.
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Example 16.9. Let J have two objects and two morphisms:

♠ ♥

A colimit for this J is called a coequaliser in C. On Problem Sheet H you get to
investigate what coequalisers are in Sets, Groups and Top.

Remark 16.10. Suppose J is an index category and T : J→ C is a functor. Suppose
S : C→ D is another functor. Then (S ◦ T ) : J→ D is a diagram in D. Assume that
both the colimits colimT and colim (S ◦T ) exist (as objects of C and D respectively).
Then we claim there is a natural morphism

u : colim (S ◦ T )→ S(colimT ).

Indeed, if lα : T (α)→ colimT are the maps from T being a colimit, then applying S
we get maps S(lα) : ST (α) → S(colimT ). Moreover if i : α → β is a morphism in J
then the following commutes:

ST (α) S(colimT )

ST (β)

S(lα)

ST (i)
S(lβ)

This shows that (S(colimT ), {S(lα)}) form a solution to the diagram S ◦T . Thus by
the universal property of the colimit, we get a unique morphism

u : colim (S ◦ T )→ S(colimT )

as claimed

Let us now discuss a refinement of the idea of a colimit.

Definition 16.11. Let J be a small category with obj(J) 6= ∅. We say that J is
filtered if the following two properties hold:

1. If α, β ∈ obj(J) then there exists γ ∈ obj(J) such that Hom(α, γ) 6= ∅ and
Hom(β, γ) 6= ∅.

α

γ

β

i

j

2. If i, j : α → β are any two morphisms then there exists an object γ of J and a
morphism k : β → γ such that k ◦ i = k ◦ j.

β

α γ

β

ki

j k
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Example 16.12. Let (Λ,�) be a directed set. This means that � is a binary
relation on Λ which is reflexive and transitive, which has the additional property
that for all α, β ∈ Λ there exists γ ∈ Λ such that α � γ and β � γ. From (Λ,�) we
can form a filtered category J(Λ,�) as follows:

• Take obj(J) = Λ.

• Set Hom(α, β) = ∅ if α � β, and if α � β let Hom(α, β) consist of a single
element iα,β.

• If α � β � γ then define iβ,γ ◦ iα,β := iα,γ .

Definition 16.13. Let C be a category. A filtered diagram in C is a functor
T : J → C where J is a filtered index category. A filtered colimit in C is a colimit
of a filtered diagram T : J→ C. In this case we bung an arrow underneath and write
colim−−−−−→T instead of just colimT .

In fact, in this course we will basically only ever need one type of filtered colimit
(we will need the general case in Algebraic Topology II).

Example 16.14. A sequential colimit is a filtered colimit on the directed set (N,≤).
Let us spell out what this means explicitly, since this is the most important type of
filtered colimit. Let C be a category, and assume we are given a sequence

fn : Cn → Cn+1, n ∈ N,

of morphisms in C. This data is equivalent to a filtered diagram T : J(N,≤) → C:
namely define T (n) := Cn and for n ≤ m define

T (in,m) := fm−1,m ◦ fm−2,m−1 ◦ · · · ◦ fn,n+1 : Cn → Cm.

The filtered colimit of T is an object colim−−−−−→T (which we will usually write as colim−−−−−→nCn
instead) together with a family of morphisms ln : Cn → colim−−−−−→iCi for n ∈ N such that

ln+1 ◦ fn = ln, ∀n ∈ N.

This satisfies the universal property that if (D, {dn}) is object of C and a family of
morphisms dn : Cn → D for n ∈ N such that

dn+1 ◦ fn = dn, ∀n ∈ N,

then there exists a unique morphism u : colim−−−−−→nCn → D such that the following
diagram commutes:

Cn+1

Cn colim−−−−−→nCn

D

ln+1

dn+1

fn

ln

dn
u

∀n ∈ N.
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Remark 16.15. For the rest of this lecture I will work with a general filtered colimit.
If you find the formalism confusing, I strongly urge you to rewrite everything out in
the special case of a sequential colimit.

Let us now prove that filtered colimits exist in all our favourite categories. Ac-
tually this all works for arbitrary colimits (rather than filtered colimits) but the
construction is rather messier. We begin with Sets.

Example 16.16. Let T : J→ Sets be a filtered diagram. Let us construct the filtered
colimit. First, form the disjoint union

Z :=
⊔

α∈obj(J)

T (α).

We now define an equivalence relation ∼ on Z by declaring that a ∈ T (α) ∼ b ∈ T (β)
if and only if there exists i : α→ γ and j : β → γ such that T (i)a = T (j)b:

a ∼ b ⇔ T (i)a = T (j)b.

It is somewhat tedious to check that ∼ really is an equivalence relation on Z, and I
will leave this you. Given this though, it is easy to see that X := Z/ ∼ satisfies the
universal property, where the maps lα : T (α) → X are induced from the inclusions
T (α)→ Z.

Now let us check they exist in Top.

Example 16.17. Colimits always exist in Top. Suppose T : J → Top is a diagram.
Let F : Top→ Sets denote the “forgetful” functor (cf. Example 1.14.) Then F ◦ T is
a diagram in Sets. We just constructed the filtered colimit in Set. Let us call this set
X. In fact, X will also work for the filtered colimit in Top, once we give it a topology.

For this, note that the construction in the previous example provides us with
functions lα : F (T (α)) → X (here F (T (α)) is just the underlying set of the topo-
logical space T (α).) Let us now endow X with a topology by declaring that the
functions lα are continuous. Explicitly, this means that a set U ⊆ X is open if and
only if l−1

α (U) is open in T (α) for each α ∈ obj(J). Then the functions lα : T (α)→ X
are now well-defined morphisms in Top (i.e. continuous functions), and it is easy to
see that (X, {lα}) verifies the universal property. Thus X = colim−−−−−→T . Note that this
is an example where the natural map from Remark 16.10 is an isomorphism

F (colim−−−−−→T ) = colim−−−−−→(F ◦ T )

(as they are both the set X.)

Remark 16.18. Without additional hypotheses on the types of topological spaces
we are working with, the colimit can be rather badly behaved. Indeed, sometimes
the topology one gets on colim−−−−−→T can be “wrong”. We will discuss this more in later
lectures. Next semester, we will introduce homotopy colimits which are much
better behaved in Top.

Now we check that filtered colimits exist in Ab.
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Example 16.19. Let J be a filtered index category and T : J → Ab be a filtered
diagram. This time, we consider the forgetful functor F : Ab → Sets. Our strategy
is the same as before. We will endow the set X = colim−−−−−→(F ◦ T ) from Example 16.16
with the structure of an abelian group. Given a ∈ T (α) and b ∈ T (β), choose an
object γ such that there exist morphisms i : α→ γ and j : β → γ. Then define

[a] + [b] := [T (i)a+ T (j)b].

It is again slightly tedious to check this operation is well-defined3, and I will lazily
leave this to you. Once this is done though, the functions lα : T (α) → X are well-
defined morphisms in Ab (i.e. group homomorphisms), and it is easy to see that
(X, {lα}) verifies the universal property. Thus X = colim−−−−−→T , and once again we have

F (colim−−−−−→T ) = colim−−−−−→(F ◦ T ).

Remark 16.20. Suppose T : J → Ab is a filtered diagram and [a] ∈ colim−−−−−→T where
a ∈ T (α). Then [a] = 0 ∈ colim−−−−−→T if and only if there exists a morphism i : α→ β in
J such that T (i)a = 0 ∈ T (β). Here “if” is immediate from the definition, but “only
if” requires a little bit of thought (which I invite you to do!)

In particular, if we restrict to sequential colimits, say C = colim−−−−−→nCn where each
Cn is an abelian group, then an element c ∈ Ck represents the zero element in C if
and only if there exists a finite m ≥ k such that c is mapped onto the zero element
in Cm.

Filtered colimits always exist in Comp, too.

Example 16.21. The same thing works Comp. Let J be a filtered index category
and let T : J → Comp be a filtered diagram. Thus for each α ∈ obj(J) we get a
chain complex (T (α)•, ∂

α), and for each morphism i : α → β, we get a chain map
T (i)• : T (α)• → T (β)•.

For each fixed n ∈ Z, we get a functor Tn : J→ Ab given by Tn(α) = T (α)n. Since
we already know filtered colimits exist in Ab, this gives us abelian groups colim−−−−−→Tn
for each n. Denote by lαn : T (α)n → colim−−−−−→Tn the map associated to this colimit. The
boundary operators ∂α induce maps

T (α)n T (α)n−1

colim−−−−−→Tn colim−−−−−→Tn−1

∂α

lαn lαn−1

∂

These operators square to zero, and hence we get a chain complex
(

colim−−−−−→T•, ∂
)

.

This is the filtered colimit of T .

We conclude this lecture by proving the following rather abstract result, which
roughly speaking says that the homology functor commutes with taking filtered col-
imits. This result only works for filtered colimits (rather than arbitrary colimits.)

3That is, if a ∼ a′ and b ∼ b′ then with the obvious notation we need T (i)a+T (j)b ∼ T (i′)a′+T (j′)b′.
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If T : J→ Comp is a filtered diagram, for any n ∈ Z the composition Hn ◦T : J→
Ab is a filtered diagram of abelian groups. In order to make the notation a little bit
less horrendous, let us abbreviate Cα• := T (α)• for α ∈ obj(J). Thus Hn ◦ T is the
diagram where

α 7→ Hn(Cα• ), α ∈ obj(J)

and
i ∈ Hom(α, β) 7→ Hn(T (i)) : Hn(Cα• )→ Hn(Cβ• ).

We denote by colim−−−−−→(Hn ◦ T ) the associated filtered colimit.

Theorem 16.22. Let J be a filtered index category and T : J → Comp a filtered
diagram. Then for any n ∈ Z, one has

colim−−−−−→(Hn ◦ T ) = Hn (colim−−−−−→T ) .

Proof. We will prove that the natural map

u : colim−−−−−→(Hn ◦ T )→ Hn (colim−−−−−→T ) . (16.1)

from Remark 16.10 is an isomorphism. Suppose z ∈ colim−−−−−→T is a cycle. Choose a
representative a ∈ Cαn for some α ∈ obj(J). We don’t necessarily know that a is a
cycle in Cαn , but since z is a cycle, a must become a cycle “eventually”. In other
words, there exists β ∈ obj(J) and a morphism i : α→ β such that ∂β(T (i)a) = 0 in

Cβn−1. Thus T (i)a defines an element in 〈T (i)a〉 ∈ Hn(Cβ• ). This element represents
an element x ∈ colim−−−−−→(Hn ◦ T ), and by construction, u(x) = 〈z〉. This shows that
(16.1) is surjective.

Now let us prove that the map (16.1) is injective. Suppose an element x in
colim−−−−−→(Hn ◦ T ) goes to zero under the map u. Choose a representative 〈c〉 ∈ Hn(Cα• )
of x. Let c ∈ Cαn represent 〈c〉. Then c also represents an element z of colim−−−−−→T . By

assumption z is a boundary ∂y; let us now choose a representative b ∈ Cβn+1 of y.
Now since J is filtered, we can choose an object γ ∈ obj(J) and morphisms i : α→ γ
and j : β → γ. Then T (i)c ∈ Cγn and T (j)b ∈ Cγn+1, and ∂γ(T (j)b) = T (i)c. This
means that Hn(T (i))〈c〉 = 〈T (i)c〉 = 0 ∈ Hn(Cγ• ), and thus 〈c〉 represents the zero
element in colim−−−−−→(Hn ◦ T ).
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LECTURE 17

The Jordan-Brouwer Separation
Theorem

We begin this lecture with a bit more abstract nonsense. We then use this to prove
the famouse Jordan-Brouwer Separation Theorem.

Our first result shows that under favourable assumptions, the singular chain com-
plex functor also commutes with colimits. Before proving this, let us talk a little bit
about the different separation axioms a topological space can have.

Definition 17.1. Let X be a topological space. We say that:

• X is a T1 space if the points are closed in X.

• X is a weakly Hausdorff space if for every continuous map f : K → X from
a compact Hausdorff space, f(K) is closed in X.

On Problem Sheet I you will show:

Lemma 17.2. One has

{Hausdorff spaces} ( {weakly Hausdorff spaces} ( {T1 spaces}.

Remark 17.3. In algebraic topology, the weakly Hausdorff assumption is typically
the most useful one to make. In fact, most of modern algebraic topology implicitly
always works with the subcategory of Top of compactly generated spaces. A
compactly generated space is (by definition) a weakly Hausdorff k-space (we will
define k-spaces in Algebraic Topology II). This category is much more “convenient”
than Top itself: it is large enough that only truly pathological topological spaces
(that no self-respecting algebraic topologist would ever care about) fail to lie in it,
and behaves nicely under various categorical operations. However most of this goes
beyond the scope of the course, and so we will typically just use either the T1 axiom
or the Hausdorff axiom.

Let us consider sequential colimits of embeddings in Top. Thus suppose we are
given a family

in : Xn → Xn+1, n ∈ N,
of continuous maps such that each in is an embedding (this means that in is a home-
omorphism onto its image.) Replacing Xn with the homeomorphic space in(Xn),
we may assume that Xn ⊆ Xn+1 and that in is the inclusion. Then the sequential
colimit X := colim−−−−−→nXn is simply the union:

X =
⋃
n∈N

Xn,
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topologised so that a set C ⊆ X is closed if and only if C ∩Xn is closed for each n.
However the topology on X might be “wrong”. Indeed, for each n the colimit gives us
a map ln : Xn → X. One would hope that these maps would also be embeddings (i.e.
homeomorphisms onto their images), but in general this is not true. In particular,
Xn does not have to be closed in X.

If however we assume in is a closed embedding (i.e. in(Xn) is a closed subspace
of Xn+1 for each n ∈ N) then the map ln : Xn → X is itself a closed inclusion1, and
hence also an embedding. In particular, Xn is closed in X. If each Xn is T1 then so
is X by definition of the colimit topology.

We now prove the following key result.

Proposition 17.4. Suppose we are given a family in : Xn → Xn+1 for n ∈ N of
closed inclusions. Assume in addition that for each n the space Xn is T1. Then

colim−−−−−→
n

C•(Xn) = C•(colim−−−−−→
n

Xn).

Proof. The main step in the proof is the following claim.

Lemma 17.5. Let f : K → X be a continuous map from a compact space K. Then
f(K) is contained in one of the Xn.

Proof. Assume for contradiction the claim is false. Then for each n ∈ N we may
select a point xn ∈ K such that f(xn) /∈ Xn. Let Sm := {f(xn) | n ≥ m}. Then
Sm+1 ⊂ Sm for each m ∈ N and

⋂
m Sm = ∅. Moreover Sm meets Xn in a finite set

for each n, and thus since each Xn is T1, it follows that Sm∩Xn is a closed set in Xn

for each n. Thus by definition of the colimit topology on X, Sm is closed in X for
each m. This means that if we set Ym := X \Sm then Ym is open in X for each m and⋃
m Ym = X. In particular, the Ym’s form a cover of f(K). But no finite subcover

of them can cover f(K), since any finite subcover is contained in the largest, and by
construction f(K) is not a subset of any of the Ym. Thus f(K) is not compact in X,
which contradicts K being compact and f continuous.

Going back to the proof of Proposition 17.4, it suffices now to observe that any
singular simplex σ : ∆m → X is contained in some Xn by Lemma 17.5. The result
now follows immediately from the definition of the colimit in Comp.

The following corollary gives a topological version of Theorem 16.22. In the
statement and proof, let us temporarily write Hsing

k for the singular homology functor,

which is the composition Hsing
k = Hk ◦ C• where C• is the singular chain complex

functor and Hk : Comp→ Ab is the usual homology functor.

Corollary 17.6. Suppose we are given a family in : Xn → Xn+1 for n ∈ N of closed
inclusions. Assume in addition that for each n the space Xn is T1. Then for each
k ≥ 0, the singular homology groups satisfy

Hsing
k (colim−−−−−→

n
Xn) = colim−−−−−→

n
Hsing
k (Xn).

1Exercise: Why?
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Proof. By Proposition 17.4, C•(colim−−−−−→nXn) = colim−−−−−→nC•(Xn) (as chain complexes).
By Theorem 16.22 we have Hk(colim−−−−−→nC•(Xn)) = colim−−−−−→nHk(C•(Xn)). The latter is

by definition the sequential colimit colim−−−−−→nH
sing
k (Xn).

Remark 17.7. The fundamental group of X is defined by looking at continuous maps
u : S1 → X. Since S1 is also a compact Hausdorff space, exactly the same argument
as in the proof of Proposition 17.4 shows that under these hypotheses, one also has

π1(X, p) = colim−−−−−→
n

π1(Xn, p), ∀ p ∈ X1

(note that the right-hand side is a colimit in the category Groups.)

Remark 17.8. In fact, in this lecture we will use an easier version of Proposition
17.4 and Corollary 17.6. Namely, both statements are still true if we assume instead
that each Xn ⊂ X is an open set. In fact, this argument is much easier (and does
not require any separation axioms). Indeed, if each Xn is open and f : K → X is a
continuous map from any compact space, then {Xn} is an open cover of the compact
set f(K), and hence there is a finite subcover. Thus f(K) is contained in a single
Xn, and so the analogue of Lemma 17.5 holds.

Next lecture when we discuss cell complexes we will need the harder version we
proved above.

We now move towards proving the Jordan-Brouwer Separation Theorem. The
first step is the following two results, both of which concern the reduced homology
groups of a sphere with a set removed.

Proposition 17.9. Let X ⊂ Sn be a subset homeomorphic to Im := [0, 1]m for
0 ≤ m ≤ n. Then

H̃k(S
n \X) = 0, ∀ k ≥ 0.

Proof. We argue by induction on m. If m = 0 then X is a point and Sn \X ∼= Rn,
which has zero reduced homology by Corollary 12.20. Now assume the result is true
for m− 1. Let f : X → Im be our given homeomorphism. Split the m-cube Im into
its upper and lower halves:

I+ =

{
(x1, . . . , xm) | x1 ≥

1

2

}
, I− :=

{
(x1, . . . , xm) | x1 ≤

1

2

}
.

Then I+ ∩ I− is homeomorphic to Im−1. Let X± := f−1(I±) and let Y := X+ ∩X−
so that Y ∼= Im−1. The set Sn \ Y may be written as the union of two sets (Sn \
X+)∪ (Sn \X−) which satisfy the requirements of the Mayer-Vietoris sequence. Fix
k ≥ 0. We get an exact sequence

. . . H̃k+1(Sn\Y )→ H̃k(S
n\X)→

(
H̃k(S

n \X+)⊕ H̃k(S
n \X−

)
→ H̃k(S

n\Y )→ . . .

By the inductive hypotheses the end terms are both zero. Thus we have an isomor-
phism

H̃k(S
n \X)

(Hk(ı+),Hk(ı−))
−−−−−−−−−−−→

(
H̃k(S

n \X+)⊕ H̃k(S
n \X−

)
3



Suppose now we have a non-zero homology class 〈c〉 ∈ H̃k(S
n \X). Then at least one

of Hk(ı
+)〈c〉 and Hk(ı

−)〈c〉 are non-zero, where ı± : Sn\X ↪→ Sn\X± are inclusions.
Assume without loss of generality that Hk(ı

+)〈c〉 6= 0. Now we repeat the process,
splitting X+ into two pieces whose intersection is homeomorphic to Im−1. In this
manner a sequence of closed subsets of Sn may be constructed:

X = X1 ⊇ X2 ⊇ X3 ⊇ · · ·

having that the property that the inclusion Sn \X ↪→ Sn \Xj induces a homomor-
phism in homology that takes our non-zero homology class to a non-zero element
〈cj〉 ∈ H̃k(S

n \Xj). Set Z :=
⋂
j Xj . Since Sn \Xj ⊂ Sn \ Z is open for each j, the

hypotheses of Remark 17.8 are satisfied2, and thus

H̃k(S
n \ Z) = colim−−−−−→

j
H̃k(S

n \Xj). (17.1)

Moreover since the map H̃k(S
n \ Xj) → H̃k(S

n \ Xj+1) sends 〈cj〉 to 〈cj+1〉, by
definition of the filtered colimit we end up with a non-zero element in 〈c∞〉 ∈ H̃k(S

n\
Z) (cf. Remark 16.20.)

Now we play the joker: being an infinite intersection of shrinking m-cubes, Z is
homeomorphic to Im−1! Thus by the inductive hypothesis, H̃k(S

n \ Z) = 0. This
contradicts the existence of a non-zero class 〈c〉 ∈ H̃k(S

n \X), and thus we see that
H̃k(S

n \X) = 0 as required. Since k ≥ 0 was arbitrary, we are done.

We now use this to prove the following corollary.

Corollary 17.10. Let S ⊂ Sn be a subset which is homeomorphic to Sm for some
0 ≤ m ≤ n− 1. Then

H̃k(S
n \ S) =

{
Z, k = n−m− 1,

0, otherwise.

Proof. Once again we induct on m. For m = 0, S is two points, and Sn \ S ' Sn−1.
Since Sn−1 has the desired homology, the case m = 0 follows. Now assume the
result is true for m − 1. Write S = B+ ∪ B− where B± are homeomorphic to
closed hemispheres in Sm and R := B+ ∩ B− is homeomorphic to Sm−1. Now the
Mayer-Vietoris sequence for reduced homology (Corollary 14.10) applied to Sn \R =
(Sn \B+) ∪ (Sn \B−) has the form(
H̃k+1(Sn \B+)⊕ H̃k+1(Sn \B−)

)
→ H̃k+1(Sn \R)

→ H̃k(S
n \ S)→

(
H̃k(S

n \B+)⊕ H̃k(S
n \B−)

)
.

The end terms are zero by Proposition 17.9. Thus we obtain an isomorphism
H̃k+1(Sn \R)→ H̃k(S

n \ S), which allows us to complete the inductive step.

2Strictly speaking we are working with reduced homology here, but this makes no difference, as the
reader is invited to check (alternatively, prove the case k = 0 directly!)
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We can now prove the following famous result.

Theorem 17.11 (The Jordan-Brouwer Separation Theorem). Suppose f : Sn−1 →
Sn is an embedding. Then Sn \f(Sn−1) has two components, and f(Sn−1) is bound-
ary of each component.

Proof. Let S = f(Sn−1). Then by Corollary 17.10, H0(Sn \S) = Z⊕Z and Hk(S
n \

S) = 0 for k > 0. Thus by Corollary 12.12, Sn \ S has two path components. Since
S is closed, Sn \S is open, and hence in particular locally pathwise connected. Thus
the path components agree with the connected components.

Let X and Y be the two components of Sn\S. Since X∪S is closed, the boundary
of ∂X := X \X◦ is contained in S. We claim that also S ⊆ ∂X, whence S = ∂X.
Let p ∈ S and let U be a neighbourhood of p in Sn. Since S is an embedded copy
of Sn−1, there is a subset C of U ∩ S with p ∈ C and S \C homeomorphic to Bn−1.
See Figure 17.1.

Figure 17.1: Proving the Jordan-Brouwer Separation Theorem.

Now by Proposition 17.9 and the dimension axiom, we see that Sn \ (S \ C) has
one path component. Suppose x ∈ X and y ∈ Y . Then there is a path u from x to y
with image in Sn \ (S \ C). Since X and Y are distinct path components of Sn \ S,
the path u must intersect C, and hence C contains points belonging to both X and
Y . Thus p ∈ ∂X. Since p was an arbitrary point of S, we have S ⊆ ∂X and so also
S = ∂X. Similarly S = ∂Y . The proof is complete.

On Problem Sheet I, you get to prove the following equally famous result, also
due to Brouwer.

Theorem 17.12 (Invariance of Domain Theorem). Suppose U and U ′ are two subsets
of Sn and f : U → U ′ is a homeomorphism. If U is open then so is U ′.

The theorem is of course obvious if “open” is replaced by “closed”. Likewise the
theorem is also clear if f = g|U , where g : Sn → Sn is a homeomorphism of the entire
sphere Sn and U ′ = g(U). However the theorem is not true for arbitrary spaces. For

5



example, take U = (1/2, 1] and U ′ = (0, 1/2]. Then f : U → U ′ given by x − 1
2 is

a homeomorphism and U is open in I. But U ′ is not. The proof of Theorem 17.12
is a simple application of the Jordan-Brouwer Separation Theorem 17.11, and the
meaning of the name “invariance of domain” is explained by the following corollary
(also on Problem Sheet I.)

Corollary 17.13. If Rn contains a subspace homeomorphic to Rm then m ≤ n.
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LECTURE 18

Attaching spaces and cell complexes

In this lecture we introduce a nice class of topological spaces called cell complexes1.
We begin by investigating pushouts in Top.

Definition 18.1. Let X and Y be topological spaces, and let X ′ ⊆ X be a closed
subspace. Let f : X ′ → Y be continuous. We define the adjunction space X ∪f Y
to be obtained by taking the disjoint union X t Y and then identifying x with f(x)
for all x ∈ X ′. Slightly more formally, X ∪f Y is the space (X t Y )/ ∼, where ∼
is the smallest equivalence relation (cf. the definition from the solution to Problem
H.5) on X t Y such that x ∼ f(x) for x ∈ X ′.

The canonical inclusions X ↪→ XtY and Y ↪→ XtY induce maps g : X → X∪fY
and j : Y → X ∪f Y . The next piece of point-set topology is on Problem Sheet I.

Lemma 18.2. The diagram

X ′ Y

X X ∪f Y

f

ı j

g

is a pushout in Top. Moreover

1. The map j is a closed embedding,

2. The restriction of g to X \X ′ is an open embedding.

3. If X and Y are T1 spaces then so is X ∪f Y .

4. The quotient map X t Y → X ∪f Y is closed if and only if f is closed.

5. If X and Y are Hausdorff and X ′ ⊆ X is compact then X ∪f Y is Hausdorff.

6. If X is compact and X ∪f Y is Hausdorff then X 7→ g(X) is a quotient map.

Informally, one should think of X ∪f Y as being obtained from Y by attaching
X \X ′ to it. We call f the attaching map and g the characteristic map of the
adjunction space.

Example 18.3. Suppose Y = {∗} is a space with one point. Then there is only one
map f : X ′ → {∗} (for X ′ 6= ∅), and one has X ∪f {∗} ∼= X/X ′.

The following lemma is a partial converse to Lemma 18.2.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
1They are often called CW complexes in the literature; the “C” stands for “closure finite” and the

“W” stands for “weak topology”. But I think the name “cell complex” is catchier.
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Lemma 18.4. Suppose we are given a commutative diagram of continuous maps:

X ′ Y

X Z

f

i j

g

Assume that2

1. i and j are closed embeddings,

2. g induces a bijection X \X ′ → Z \ j(Y ),

3. g(X) is closed,

4. X → g(X) is a quotient map.

Then (Z, j, g) is a pushout of X
i←− X ′ f−→ Y .

Proof. We verify the universal property. Suppose we are given a topological space
W and continuous maps h : X →W and k : Y →W such that h ◦ i = k ◦ f . We need
to build a unique continuous map u : Z →W such that the following commutes:

X ′ Y

X Z

W

f

i j

k
g

h

u

It is clear that Z is a set-theoretic pushout, so we get a unique map u : Z → W
of sets that makes the diagram commute. It remains to show that u is continuous.
Since j is a closed embedding, u|j(Y ) is continuous. Since g is a quotient map, u|g(X)

is continuous. Since g(X) and j(Y ) are closed sets that cover Z, u is continuous.

Definition 18.5. We denote Bn \ Sn−1 by En, so that En is the open unit ball3.
We call En the standard n-cell. If X is a topological space, a set E ⊆ X which
is homeomorphic to En is called an n-cell in X. If f : Sn−1 → Y is continuous, the
space Bn ∪f Y is said to be obtained from Y by attaching an n-cell.

Proposition 18.6. Let Z be a Hausdorff space and Y a closed subset. Suppose there
exists a continuous map g : Bn → Z which induces a homeomorphism En → Z \ Y .
Then Z is obtained from Y by attaching an n-cell.

2Condition (4) is automatic given the others if X is compact and Z is Hausdorff, as in the last part of
Lemma 18.2.

3If n = 0, E0 is just a point since S0 is two points.
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Proof. It suffices to show that g(Sn−1) ⊆ Y . Then if we set f := g|Sn−1 the hypothe-
ses of Lemma 18.4 are satisfied. Then Z is a pushout, and hence Z ∼= Bn ∪f Y by
uniqueness of the pushout. So suppose there exists x ∈ Sn−1 with g(x) ∈ Z \ Y .
Since g|En : En → Z \ Y is bijective, there exists a unique y ∈ En with g(x) = g(y).
Let U ⊂ Bn and V ⊂ En be disjoint open neighbourhoods with x ∈ U and y ∈ V .
Then g(V ) ⊂ Z \ Y is open in Z, since g|En : En → Z \ Y is a homeomorphism. But
now using continuity of g, there exists an open neighbourhood U ′ ⊂ U of x such that
g(U ′) ⊂ g(V ). This contradicts g|En being injective.

You will no doubt be surprised just how many of the “standard” spaces can be
obtained by attaching cells. Let’s see some examples, starting with a dumb one.

Example 18.7. For all n ≥ 1, Sn is obtained by attaching an n-cell to a point.
Indeed, this is simply Example 18.3 together with the observation that Bn/Sn−1 ∼=
Sn, a fact that we have already used several times.

Example 18.8. Recall
RPn = Rn+1 \ {0}/ ∼,

where x ∼ y if x = ty for some t 6= 0. Restricting to vectors of length 1, we also see
that

RPn = Sn/(x ∼ −x),

that is, the sphere with antipodal points identified. But this is the same thing as
taking the upper hemisphere and identifying antipodal points on the equator. Since
the equator is just the sphere of dimension one less, we see that RPn is obtained
from RPn−1 by attaching an n-cell. Explicitly, if p : Sn−1 → RPn−1 is the quotient
map then

RPn = Bn ∪p RPn−1.

This implies that we can write RPn as a disjoint union

RPn = E0 ∪ E1 ∪ · · · ∪ En,

where each Ei denotes an i-cell.

Example 18.9. We can play a similar game with complex projective space CPn.
This is the space of lines in Cn+1 that go through the origin. Alternatively, CPn =
S2n+1/ ∼, where two points (z1, . . . , zn+1) ∼ (w1, . . . , wn+1) in S2n+1 ⊂ Cn+1 are
equivalent if and only if there exists λ ∈ S1 such that wi = λzi for each i = 1, . . . , n+1.
It follows that CPn is obtained from CPn−1 by attaching a 2n-cell, and hence we
can write CPn as a disjoint union

CPn = E0 ∪ E2 ∪ · · · ∪ E2n,

where each E2i denotes a 2i-cell.

Our next example requires a definition first.
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Definition 18.10. Let X and Y be topological spaces, and let p ∈ X and q ∈ Y .
Define the wedge of the pointed spaces (X, p) and (Y, q) to be

X ∨ Y :=
(
X × {q}

)
∪
(
{p} × Y

)
⊆ X × Y.

This is again a pointed space, where the basepoint is (p, q). This is actually the
coproduct (cf. Example 16.8) in the category Top∗.

On Problem Sheet I you get to prove the following result.

Proposition 18.11. For any m,n ≥ 0, the space Sm × Sn can be obtained from
Sm ∨ Sn by attaching a (m+ n)-cell.

Note that one cannot use Corollary 17.6 to compute the homology groups of
X∪f Y , since a pushout is not a filtered colimit. Nevertheless, when we are attaching
cells (i.e. X is a ball), we can use the Mayer-Vietoris sequence to compute the
homology. Before stating the result, let us introduce a strengthening of the notion
of a retract from Lecture 1.

Definition 18.12. Let X ′ ⊆ X be a subspace. Let ı : X ′ ↪→ X be the inclusion. We
say that X ′ is a deformation retract of X if there exists a retract r : X → X ′ (as
defined in Definition 1.2) such that r ◦ ı = idX′ and ı ◦ r ' idX . Equivalently, this
means there exists a continuous function H : X × I → X such that H(x, 0) = x for
all x ∈ X, H(x, 1) ∈ X ′ for all x ∈ X, and H(x′, 1) = x′ for all x′ ∈ X ′ (in this
formulation, the retract r is given by H(·, 1).)

If X ′ is a deformation retract of X then the retract r is a homotopy equivalence,
and hence X ′ and X have the same homotopy type. Next lecture we will introduce an
even stronger version4 called (rather unimaginatively) a strong deformation retract.

Proposition 18.13. Let Y be a Hausdorff topological space. Let n ≥ 1, and suppose
f : Sn−1 → Y is continuous. Then if j : Y → Bn ∪f Y denotes the inclusion, there is
an exact sequence

· · · → Hk(S
n−1)

Hk(f)−−−−→ Hk(Y )
Hk(j)−−−→ Hk

(
Bn ∪f Y

)
→ Hk−1(Sn−1)→ . . .

which ends with

. . . H0(Sn−1)→ Z⊕H0(Y )→ H0

(
Bn ∪f Y

)
→ 0.

Proof. Write Bn∪f Y as U ∪V , where U is the ball of radius 1/2 inside Bn and V is(
Bn∪fY

)
\0 ∈ Bn. Then U∩V is homotopy equivalent to Sn−1 and U is contractible.

We claim that V has Y as a deformation retract. For this, let g : Bn → Bn ∪f Y
denote the characteristic map of the adjunction space, and define H : V × I → V by

H(x, t) :=

{
x, if x ∈ Y,
g
(
(1− t)z + tz/|z|

)
, if x = g(z) ∈ g(En \ 0).

(18.1)

4Warning: There is a slight discrepancy in the terminology here. Whilst most of the literature defines
a deformation retract as we have in Definition 18.12, Hatcher’s textbook instead defines a deformation
retract to be what we will call a “strong deformation retract” next lecture.
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H is well-defined and continuous5. Denote by h : U ∩ V ↪→ V the inclusion. The
Mayer-Vietoris sequence then gives us a long exact sequence

· · · → Hk(U ∩ V )
Hk(h)−−−−→ Hk(U)⊕Hk(V )→ Hk

(
Bn ∪f Y

)
→ Hk−1(U ∩ V )→ . . .

For k > 0 we have Hk(U) = 0, and for k = 0 we have Hk(U) = Z as U is path
connected. After replacing U ∩ V with Sn−1 and V with Y , we are almost done.
It remains to see that for k > 0 we can identify Hk(h) : Hk(U ∩ V ) → Hk(V ) with
Hk(f) : Hk(S

n−1)→ Hk(Y ). For this we consider the commutative diagram:

U \ {0} U ∩ V

Bn \ {0} V

Sn−1 Y

g

h

f

The unlabelled vertical maps all induce isomorphisms on homology, since the re-
spective subspaces are deformation retracts. The top horizontal map, which is the
restriction of g, also induces an isomorphism, since g|U\{0} is a homeomorphism.
Thus for any k ≥ 0 we get a commutative diagram in homology where the vertical
maps are isomorphisms:

Hk(U ∩ V ) Hk(V )

Hk(S
n−1) Hk(Y )

Hk(h)

Hk(f)

Thus the map Hk(h) can be identified with the map Hk(f). This completes the
proof.

If n ≥ 2 we can say a little more:

Corollary 18.14. Let Y be a Hausdorff topological space. Let n ≥ 2, and suppose
f : Sn−1 → Y is continuous. Then if k 6= n− 1, n, one has

Hk(Y ) ∼= Hk

(
Bn ∪f Y

)
,

and there is an exact sequence

0→ Hn(Y )
Hn(j)−−−−→ Hn

(
Bn∪fY )→ Hn−1(Sn−1)

Hn−1(f)−−−−−→ Hn−1(Y )→ Hn−1

(
Bn∪fY

)
.

If n ≥ 3 then the last map Hn−1(Y )→ Hn−1

(
Bn ∪f Y

)
is a surjection.

Proof. This is immediate from Proposition 18.13 and our computation of the homol-
ogy of Sn−1 in Theorem 14.11.

5Continuity of H is a little exercise using quotient maps.
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We can also attach several cells at the same time.

Definition 18.15. Let Y be topological space. We say that a topological space Z
is obtained from Y by attaching n-cells if there exists a pushout⊔

λ∈Λ S
n−1
λ Y

⊔
λ∈ΛB

n
λ Z

f

j

g

Here the index λ ∈ Λ just enumerates different copies of the same space. The map
j : Y → Z is again a closed embedding, and g induces a homeomorphism

⊔
λE

n
λ →

Z \ Y . We set fλ := f |Sn−1
λ

and similarly gλ := g|Bnλ . We call gλ the characteristic

map of the n-cell g(Enλ ) and we call fλ its attaching map. Note that the definition
still makes sense if our indexing set Λ is empty; then of course Y = Z.

We can now define the titular cell complexes.

Definition 18.16. Let X ′ ⊆ X be topological spaces such that X ′ is closed in X.
A cellular decomposition of the pair (X,X ′) consists of a sequence of subspaces:

X ′ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X

such that:

1. X is the colimit of the (Xn) in Top. In other words, X carries the colimit
topology: a set C ⊆ X is closed if and only if C ∩Xn is closed for each n ≥ −1.

2. For each n ≥ 0, Xn is obtained from Xn−1 by attaching n-cells6.

We call the pair (X,X ′) a relative cell complex. If X ′ = ∅ then X is called a
cell complex and we just write X instead of (X, ∅). The space Xn is called the
n-skeleton of (X,X ′), and we call the decomposition (Xn) for n ≥ −1 the skeleton
filtration of (X,X ′). We say (X,X ′) is finite (resp. countable) if X \X ′ consists
of a finite (resp. countable) number of cells. If X = Xn for some n then the mininal
such n is called the dimension of (X,X ′). Note that if (X,X ′) is a relative cell
complex then so is (X,Xn) and (Xn, X ′) for any n ≥ −1.

A subcomplex of a cell complex X is a subspace X ′ ⊆ X with the property that
for any cell E of X, if X ′ ∩ E 6= ∅ then E ⊆ X ′. In this case (X,X ′) is a relative
cell complex, and X ′ itself is a cell complex whose cellular decomposition is inherited
from X.

Proposition 18.17. Let (X,X ′) be a relative cell complex.

1. The inclusion Xn ⊂ Xn+1 is a closed embedding for all n ≥ −1.

2. If X ′ is a T1 space then so is X, and a compact subset of X only meets finitely
many cells of X.Thus if X ′ is T1 then

Hk(X) = colim−−−−−→
n

Hk(X
n), ∀ k ≥ 0.

6If X−1 = ∅ then for n = 0 read this to mean: X0 is a discrete set of points.
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3. If X ′ is Hausdorff7 then so is X.

4. If X ′ is Hausdorff then X also carries the colimit topology with respect to the
family which consists of X ′ and the closures of all the cells.

In particular, taking X ′ = ∅ we see that these properties always hold for a cell
complex X.

Proof. The first three points follow from Lemma 18.2, the proof of Lemma 17.5 and
Corollary 17.6. Let us prove that (4). Suppose C ⊆ X has the property that C ∩X ′
is closed and C ∩ E is closed for each cell E. We prove inductively that C ∩Xn is
closed for each n. This is true for n = −1 by assumption. The space Xn is a quotient
of

Y n := Xn−1 t

(⊔
Λn

Bn
λ

)
,

where Λn is the (possibly empty, possibly uncountable) set indexing the n-cells of X.
Each characteristic map gλ : Bn

λ → Eλ is a quotient map since X is Hausdorff (cf.
part (6) of Lemma 18.2.) By assumption Xn ∩C has a closed preimage in Y n. Then
by part (4) of Lemma 18.2, we see that Xn ∩ C is closed in Xn.

We conclude this lecture by explaining why cell complexes are so important. Let
X be a topological space and p ∈ X. In Algebraic Topology II, we will define the
higher homotopy groups πn(X, p) for all n ≥ 0 (we already did n = 0 in Lecture
3 and the fundamental group n = 1 in Lecture 4.) For n ≥ 2, πn is a functor
hTop∗ → Ab.

Definition 18.18. A continuous map f : X → Y is called a weak homotopy
equivalence if the induced map πn(f) : πn(X, p) → πn(Y, f(p)) is an isomorphism
for all n ≥ 0 and all p ∈ X.

For now this definition won’t mean much to you (since we haven’t defined πn yet!)
In general a weak homotopy equivalence is strictly weaker than an actual homotopy
equivalence8. However a weak homotopy equivalence is still strong enough for all
homology groups to coincide. Indeed, one of the axioms of a homology theory is that
if f : X → Y is a weak homotopy equivalence then Hn(f) : Hn(X) → Hn(Y ) is an
isomorphism for each n ≥ 0; more on this in Lecture 22. We will discuss the following
theorem at the end of Algebraic Topology II (Theorem 46.15).

Theorem 18.19. Let Y be any (!) topological space. Then there is a cell complex
X and a weak homotopy equivalence f : X → Y .

Theorem 18.19 implies that as far as homology is concerned, all spaces are cell
complexes. If this isn’t sufficient motivation to study cell complexes, I don’t know
what is!

7In fact, if X ′ is normal then so is X.
8Although if f : X → Y is a weak homotopy equivalence between two connected cell complexes then f

is automatically a homotopy equivalence. This result is called Whitehead’s Theorem and will be one
of the major results we prove next semester.
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LECTURE 19

The Relative Homeomorphism
Theorem

In this lecture we first complete the proof of a claim from Lecture 12: that if (X,X ′)
is a sufficiently “nice” pair then

Hn(X,X ′) ∼= H̃n(X/X ′), ∀n ≥ 0.

We will then prove that if X is a cell complex and X ′ is a subcomplex then the pair
(X,X ′) is always nice in this sense. Let us begin by specifying exactly what we mean
by “nice”.

Definition 19.1. Let X be a topological space and X ′ ⊆ X be a subspace. Denote
by ı : X ′ ↪→ X the inclusion. We say that X ′ is a strong deformation retract of X
if there exists a continuous map r : X → X ′ such that r ◦ ı = idX′ and ı ◦ r ' idX rel
X ′. Thus a strong deformation retract is a deformation retract where the homotopy
from ı◦r to idX can be chosen to be a homotopy which is relative to X ′. Equivalently,
this means there exists a continuous function H : X × I → X such that H(x, 0) = x
for all x ∈ X, H(x, 1) ∈ X ′ for all x ∈ X, and H(x′, t) = x′ for all x′ ∈ X ′ and t ∈ I.

This really is a stronger condition, as you will see on Problem Sheet J.

Theorem 19.2. Let X ′ ⊂ X be a closed subspace with the property that there exists
a neighbourhood U of X ′ in X such that X ′ is a strong deformation retract of U .
Let ρ : X → X/X ′ denote the quotient map, and denote by ∗ the point in X/X ′

corresponding to X ′/X ′. Then for all n ≥ 0, the map

Hn(ρ) : Hn(X,X ′)→ Hn(X/X ′, ∗)

is an isomorphism.

Here is an example where the theorem is applicable.

Example 19.3. Let Y be a Hausdorff space and f : Sn−1 → Y a continuous map.
Let j : Y → Bn ∪f Y denote the map induced from the inclusion Y ↪→ Bn t Y , so
that j is a closed embedding (Lemma 18.2). Then Y ∼= j(Y ) ⊂ Bn ∪f Y satisfies
the requirements of Theorem 19.2. Indeed, from the proof of Proposition 18.13, if
V := (Bn ∪f Y ) \ 0 ∈ Bn, then V is an open neighbourhood of Y and (18.1) shows
that Y is a strong deformation retract of V .

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Proof of Theorem 19.2. Let U be as specified in the theorem, and denote by  : X ′ ↪→
U the inclusion. Then we have a commutative diagram, where the horizontal maps
come from the long exact sequence for pairs:

Hn(X ′) Hn(X) Hn(X,X ′) Hn−1(X ′) Hn−1(X)

Hn(U) Hn(X) Hn(X,U) Hn−1(U) Hn−1(X)

Hn() Hn(id) Hn() Hn−1() Hn−1(id)

Since X ′ is a strong deformation retract of U , the left-hand Hn() and the right-
hand Hn−1() are isomorphisms. Since Hn(id) is certainly an isomorphism, the Five
Lemma (Proposition 11.3) tells us that the middle Hn() is also an isomorphism.
Next, since {∗} is a strong deformation retract of U/X ′ in X/X ′ (see Problem J.2),
the same argument shows that the induced map ̄ : ∗ ↪→ U/X ′ induces an isomorphism

Hn(̄) : Hn(X/X ′, ∗)→ Hn(X/X ′, U/X ′)

for all n ≥ 0. Now consider the following diagram:

Hn(X,U)

Hn(X,X ′) Hn(X \X ′, U \X ′)

Hn(X/X ′, ∗) Hn

(
(X/X ′) \ {∗}, (U/X ′) \ {∗}

)
Hn(X/X ′, U/X ′)

Hn(ρ)

Hn()

Hn(ρ)

excision

Hn(̄) excision

The right-hand side Hn(ρ) is an isomorphism since ρ is a homeomorphism away from
X ′. The two maps labelled “excision” are isomorphisms, and we just proved the two
diagonal maps on the left-hand side are isomorphisms. Thus the left-hand Hn(ρ) is
also an isomorphism, which is what we wanted to prove.

Using Corollary 12.22, we immediately obtain the claim (12.1) made in Lecture
12:

Corollary 19.4. Let X ′ ⊂ X be a closed subspace with the property that there
exists a neighbourhood U of X ′ in X such that X ′ is a strong deformation retract of
U . Then

Hn(X,X ′) ∼= H̃n(X/X ′), ∀n ≥ 0.

Here is another application. An arbitrary wedge sum is defined again as a co-
product1.

1This means that the wedge sum is topologised as a quotient of the disjoint union.
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Corollary 19.5. Suppose (Xλ, xλ), λ ∈ Λ is a collection of pointed spaces. Assume
that each xλ is closed in Xλ and has a neighbourhood Uλ ⊆ Xλ for which xλ is a
strong deformation retract of Uλ. Consider the wedge sum

∨
λ∈ΛXλ along the points

xλ (cf. Definition 18.10). Then the inclusions Xλ ↪→
∨
λ∈ΛXλ induce an isomorphism

⊕
λ∈Λ

H̃n(Xλ) ∼= H̃n

(∨
λ∈Λ

Xλ

)
.

Proof. By assumption
(⊔

λ∈ΛXλ,
⊔
λ∈Λ{xλ}

)
satisfies the hypotheses of Theorem

19.2. The claim them following from the definition of the wedge product and Corol-
lary 12.22.

Definition 19.6. Suppose f : (X,X ′)→ (Y, Y ′) is a map of pairs. We say that f is
a relative homeomorphism if f restricts to define a homeomorphism f |X\X′ : X \
X ′ → Y \ Y ′.

With this terminology, the quotient map ρ : X → X/X ′ from Theorem 19.2 can
also be thought of as a relative homeomorphism (X,X ′)→ (X/X ′, ∗). We now prove
a variant of Theorem 19.2.

Theorem 19.7 (The Relative Homeomorphism Theorem). Let f : (X,X ′)→ (Y, Y ′)
be a relative homeomorphism. Assume that X is compact and that Y is compact
Hausdorff, and that X ′ and Y ′ are closed in X and Y respectively. Assume further
that there exists a neighbourhood U of X ′ in X such that X ′ is a strong deformation
retract of U , and a neighbourhood V of Y ′ in Y such that Y ′ is a strong deformation
retract of V . Then

Hn(f) : Hn(X,X ′)→ Hn(Y, Y ′) is an isomorphism for all n ≥ 0.

Proof. Denote by ρ : X → X/X ′ and ρ′ : Y → Y/Y ′ the quotient maps. Then there
is a well-defined continuous bijective map f ′ : X/X ′ → Y/Y ′ such that the following
diagram commutes:

X Y

X/X ′ Y/Y ′

f

ρ ρ′

f ′

Since X/X ′ is compact and Y/Y ′ is Hausdorff2, the map f ′ is a homeomorphism3.
Passing to homology, for any n ≥ 0 we obtain a commutative diagram:

Hn(X,X ′) Hn(Y, Y ′)

Hn(X/X ′, ∗) Hn(Y/Y ′, ∗′)

Hn(f)

Hn(ρ) Hn(ρ)′

Hn(f ′)

2Y/Y ′ is Hausdorff as Y is compact and Y ′ is closed.
3A continuous bijection from a compact space to a Hausdorff space is automatically a homeomorphism.
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where we denoted by ∗ the point in X/X ′ corresponding to X ′/X ′ and by ∗′ the
point in Y/Y ′ corresponding to Y ′/Y ′. By Theorem 19.2 the two maps Hn(ρ) and
Hn(ρ′) are isomorphisms, and Hn(f ′) is an isomorphism as f ′ is a homeomorphism.
Thus so is the map Hn(f) : Hn(X,X ′)→ Hn(Y, Y ′).

We now prove that Theorem 19.2 is always applicable to a pair (X,X ′) where X
is a cell complex and X ′ is a subcomplex. The first step is the following technical
statement.

Proposition 19.8. Let X be a cell complex and X ′ be a subcomplex. For each cell
Eλ in X which is not in X ′, choose a single point xλ ∈ Eλ. Let

Y n := {xλ | Eλ is an n-cell in X which is not in X ′}.

Regard (X,X ′) as a relative cell complex with skeleton filtration X ′ = X−1 ⊂ X0 ⊂
X1 ⊆ · · · ⊆ X. Then for every n ≥ 1, Xn−1 is a strong deformation retract of
Xn \ Y n.

Proof. We use the same idea as in (18.1) last lecture. Namely, without loss of gener-
ality we may assume that for each n-cell not in X ′, the corresponding characteristic
map gλ : Bn

λ → Xn satisfies gλ(0) = xλ. Then we define H : Xn \ Y n × I → Xn \ Y n

by

H(x, t) :=

{
x, if x ∈ Xn−1,

gλ
(
(1− t)z + tz/|z|

)
, if x = gλ(z) for z ∈ En \ {0}.

(19.1)

We need only check that H is continuous. Since Xn has the colimit topology from
X ′ and the cells in X not belonging to X ′ (cf. the last part of Proposition 18.17),
Xn\Y n has the colimit topology determined by the cells in X ′ and the punctured cells
Eλ\{xλ} for the cells in X that are not in X ′. It then follows that Xn\Y n×I has the
colimit topology associated to the sets of the form E′×{0}, E′×{1} and E′× (0, 1),
where E′ is either a cell in X ′ or a punctured cell Eλ \ {xλ}. The restriction of H
to any of these subsets is continuous (this is proved in the same way that we proved
the map H from (18.1) was continuous), and hence H is continuous by definition of
the colimit topology.

We now prove the desired result.

Theorem 19.9. Let X be a cell complex and X ′ be a subcomplex. Then there exists
an open set U in X containing X ′ such that X ′ is a strong deformation retract of U .

Proof. Using the notation from the previous proposition, let rn : Xn \ Y n → Xn−1

denote a strong deformation retract for n ≥ 1. Set U0 = X ′ and set Un := r−1
n (Un−1)

for n ≥ 1. Then each Un is open in Xn \ Y n and thus U :=
⋃
n Un is an open set4 in

X containing X ′. Since the composition of two strong deformation retracts is itself
a strong deformation retract, we see that X ′ is a strong deformation retract of Un

4Note Y n is closed in Xn due to part (4) of Proposition 18.17.
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for each n ≥ 1. This means that there exist continuous maps Fn : Un × I → Un such
that

Fn(x, 0) = x, Fn(x, 1) = r1r2 · · · rn(x) ∈ X ′, ∀x ∈ Un,

and such that Fk(x
′, t) = x′ for all x′ ∈ X ′ and t ∈ I. Moreover by induction we may

even require that Fn+1|Un×I = Fn. This means that we can define F : U × I → U by
setting F = Fn on Un. Then F is continuous by definition of the colimit topology,
and F exhibits X ′ as a strong deformation retract of X.

Theorem 19.9 implies that for cell complexes, we can use subcomplexes instead
of open sets for excision and the Mayer-Vietoris sequence.

Corollary 19.10. Suppose X is a cell complex and X ′, X ′′ are subcomplexes such
thatX = X ′∪X ′′. Then the inclusion (X ′′, X ′∩X ′′) ↪→ (X,X ′) induces isomorphisms
on homology Hn(X ′′, X ′ ∩X ′′)→ Hn(X,X ′) for all n ≥ 0.

Proof. We may assume X ′ ∩ X ′′ 6= ∅, otherwise the result trivially follows from
Proposition 8.2. Then the quotient spaces X ′′/X ′∩X ′′ and X/X ′ are homeomorphic
(they both can be identified with the cells in X ′′ that are not in X ′). Then by
Theorem 19.2 and Theorem 19.9, we obtain for any n ≥ 0

Hn(X ′′, X ′ ∩X ′′) ∼= H̃n(X ′′/X ′ ∩X ′′) ∼= H̃n(X/X ′) ∼= Hn(X,X ′).

Corollary 19.11. Suppose X is a cell complex and X ′, X ′′ are subcomplexes such
that X = X ′ ∪X ′′. Then the there is an exact sequence

. . . Hn(X ′ ∩X ′′)→ Hn(X ′)⊕Hn(X ′′)→ Hn(X)→ Hn−1(X ′ ∩X ′′)→ . . .

Proof. The Mayer-Vietoris sequence is a formal consequence of excision and the
Baratt-Whitehead Lemma (Proposition 11.4). In other words, the proof of Theorem
14.9 goes through without any changes.

5



LECTURE 20

Cellular homology

In this lecture we introduce a new homology theory which is tailored specifically for
cell complexes. Cellular homology is much more efficient than singular homology
for computational purposes, as the cellular chain complex is much smaller. Indeed,
a basis for the nth cellular chain group is given by the n-cells of the cell complex.
For many spaces, the chain groups are then finitely generated abelian group. The
resulting homology is the same as singular homology.

The key result that gets the construction of the cellular chain complex going is
the following proposition.

Proposition 20.1. Let X be a cell complex with skeleton filtration ∅ = X−1 ⊂
X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X. Then for all n ≥ 0,

Hk(X
n, Xn−1) = 0, k 6= n.

Meanwhile Hn(Xn, Xn−1) is free abelian with a basis in one-to-one correspondence
with the n-cells of X.

Proof. Suppose that n-cells of X are given by maps gλ : (Bn, Sn−1) → (Xn, Xn−1),
where λ ranges over an index set Λn. Since Xn−1 is a subcomplex of Xn for all n ≥ 1,
by Theorem 19.9 and Theorem 19.2 we see that

Hk(X
n, Xn−1) ∼= H̃k(X

n/Xn−1), ∀ k ≥ 0.

But Xn/Xn−1 is a wedge sum of spheres, one for each of the n-cells of X. The claim
then follows from Corollary 19.5.

We now step away from cell complexes for a moment and abstract the conclusion
of Proposition 20.1 into a definition.

Definition 20.2. Let X be a topological space. A cell-like filtration F of X is
an expanding sequence of T1 closed subspaces ∅ = F−1 ⊆ F 0 ⊆ F 1 ⊆ F 2 ⊆ · · · such
that X =

⋃
n≥0 F

n carries the colimit topology, and with the property that

Hk(F
n, Fn−1) = 0, ∀ k 6= n.

Thus Proposition 20.1 tells us that the skeleton filtration associated to a cell
complex is a cell-like filtration. However the notion of a cell-like filtration is much
more general, since Fn does not have to be obtained from Fn−1 by adjoining cells,
and the topological space X does not have to be Hausdorff. In this course we will have
no need for the extra level of generality afforded by cell-like filtrations; nevertheless
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it makes1 the proof of Theorem 20.5 below more transparent to work with cell-like
filtrations, since it shows exactly what properties we need.

Our goal is to construct a new homology theory H•(X,F) associated to a topo-
logical space with a cell-like filtration. In the special case where the space is a cell
complex and the filtration is the skeleton filtration, this will be called the cellular
homology of the cell complex. Let us first prove the following statement.

Proposition 20.3. Let X be a topological space with cell-like filtration F = (Fn).
Then Hk(F

n) = 0 for k > n and the inclusion Fn ↪→ X induces an isomorphism
Hk(F

n)→ Hk(X) for k < n.

Proof. We examine the long exact sequence of the pair (Fn, Fn−1). It contains the
chain

Hk+1(Fn, Fn−1)→ Hk(F
n−1)→ Hk(F

n)→ Hk(F
n, Fn−1).

For k 6= n, n−1 the outer two groups are zero by assumption, and hence Hk(F
n−1) ∼=

Hk(F
n) for k 6= n, n− 1. In particular, if k > n then

Hk(F
n) ∼= Hk(F

n−1) ∼= · · · ∼= Hk(F
0) = Hk(F

0, F−1) = 0,

The same argument shows that the maps Hk(F
k+1)→ Hk(F

k+2)→ Hk(F
k+3)→ . . .

are all isomorphisms. Thus

colim−−−−−→
n≥k+1

Hk(F
n) = Hk(F

k+1).

But by Corollary 17.6, the colimit on the left-hand side is just the homology Hk(X).
This completes the proof.

We now define our new chain complex.

Definition 20.4. Let X be a topological space with cell-like filtration F . We define
a chain complex

(
C•(X,F), ∂F

)
as follows. Firstly, set Cn(X,F) = 0 for n < 0.

Given n ≥ 0, define Cn(X,F) to be the abelian group

Cn(X,F) := Hn(Fn, Fn−1).

Let
jn : (Fn, ∅) ↪→ (Fn, Fn−1)

denote the inclusion, and abbreviate by

ηn = Hn(jn) : Hn(Fn)→ Hn(Fn, Fn−1).

For n ≥ 1 we define2 the boundary operator ∂F : Cn(X,F) → Cn−1(X,F) as the
composition

Hn(Fn, Fn−1)
δn−→ Hn−1(Fn−1)

ηn−1−−−→ Hn−1(Fn−1, Fn−2),

1To me at least...
2For n = 0 the boundary operator is of course the zero map.
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where δn is the connecting homomorphism for the long exact sequence of the pair
(Fn, Fn−1). This does indeed define a chain complex as for n ≥ 1 the composition
∂F ◦ ∂F : Cn+1(X,F)→ Cn−1(X,F) is given by

Hn+1(Fn+1, Fn)→ Hn(Fn)
ηn−→ Hn(Fn, Fn−1)

δn−→ Hn−1(Fn−1)→ Hn−1(Fn−1, Fn−2)

and this is zero since the composition in the middle

Hn(Fn)
ηn−→ Hn(Fn, Fn−1)

δn−→ Hn−1(Fn−1)

is zero as these are two adjacent maps in the long exact sequence of the pair (Fn, Fn−1).
We denote the associated homology by Hn(X,F) := Hn

(
C•(X,F), ∂F

)
.

Here is main result of today’s lecture.

Theorem 20.5. Let X be a topological space with cell-like filtration F = (Fn).
Then for every n ≥ 0, one has

Hn(X) ∼= Hn(X,F).

Proof. Let us break with out longstanding convention and temporarily give the
boundary operator ∂F a subscript (otherwise the chain of equations below makes
no sense.) We have the following commuting diagram, where the row is part of the
long exact sequence of the pair (Fn, Fn−1), the left-hand column is part of the long
exact sequence of the pair (Fn+1, Fn), and the right-hand column is part of the long
exact sequence of the pair (Fn−1, Fn−2). The left-most and the top-right zero entries
follow from the Proposition 20.3, and the bottom zero entry is from the definition of
a cell-like filtration.

Hn+1(Fn+1, Fn) 0

0 Hn(Fn) Hn(Fn, Fn−1) Hn−1(Fn−1)

Hn(Fn+1) Hn−1(Fn−1, Fn−2)

0

∂Fn+1
δn+1

ηn δn

∂Fn

ηn−1

Using this diagram, we now argue as follows:

Hn(X) ∼= Hn(Fn+1) by Proposition 20.3,
∼= Hn(Fn)

/
im δn+1 by exactness of first column,

∼= im ηn
/

im ηnδn+1 as ηn is an injection,
∼= ker δn

/
im ηnδn+1 by exactness of the row,

∼= ker δn
/

im ∂Fn+1 by commutativity of the top triangle,

∼= ker ηn−1δn
/

im ∂Fn+1 as ηn−1 is an injection,

∼= ker ∂Fn
/

im ∂Fn+1 by commutativity of the bottom triangle,

= Hn(X,F) by the definition of homology.
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This completes the proof.

Remark 20.6. The isomorphism Hn(X) ∼= Hn(X,F) can be written down explicitly.
This is the subject of Problem J.5 on Problem Sheet J.

Now, with this detour out of the way, let us go back to cell complexes. If X
is a cell complex with skeleton filtration F = (Xn) then we will use the notation(
Ccell
• (X), ∂cell

)
instead of

(
C•(X,F), ∂F

)
for the chain complex associated to the

skeleton filtration, and by Hcell
• (X) the homology. We call Ccell

• (X) the cellular
chain complex and we call Hcell

• (X) the cellular homology of the cell complex
X.

Using Proposition 20.1, we have

Ccell
n (X) = Hn(Xn, Xn−1),

and thus we see that the cellular chain group is free abelian with generators in a
one-to-one correspondence with the n-cells of X.

Remark 20.7. The chain complex Ccell
• (X) depends on not only the space X but also

the choice of cellular decomposition. The same topological space can have different
cellular decompositions. For example, S3 has a cellular decomposition with one 0-cell
and one 3-cell (cf Example 18.7), but it also has a more complicated one (cf. Problem
K.2.) However Theorem 20.5 implies that the homology Hcell

• (X) does not depend
on the choice of cellular decomposition (since it agree with the singular homology.)

The following result applies to nearly all of the spaces we will ever meet in this
course.

Corollary 20.8. Let X be a compact cell complex of dimension n. Then

1. If X has Nk cells of dimension k then Hk(X) has rank at most Nk. In particular,
Hk(X) is finitely generated for all k.

2. Hk(X) = 0 for all k > n.

3. Hn(X) is free abelian.

Proof. Since X is compact, it is necessarily a finite cell complex. The first two
statements are clear for the cellular homology groups Hcell

k (X), and hence also for
the singular homology groups Hk(X) by Theorem 20.5. The last statement follows as
Hcell
n (X) = ker ∂cell : Ccell

n (X)→ Ccell
n−1(X) is a subgroup of Ccell

n (X), and a subgroup
of a free abelian group is necessarily free abelian.

Here is another immediate corollary.

Corollary 20.9. Let X be a cell complex. Suppose X has N cells in dimension n,
and no cells in dimension n− 1 and n+ 1. Then Hn(X) ∼= ZN .

Proof. We necessarily have Ccell
n+1(X) = Ccell

n−1 = 0, and thus Hcell
n (X) ∼= Ccell

n (X).
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Corollary 20.9 gives us a new (and much quicker) way to compute the homology
of Sn for n ≥ 2, of Sm × Sn for m,n ≥ 2, and for CPn for all n ≥ 0. Note however
we still cannot compute the homology of RPn.

To rectify this, we need to have a way of computing the boundary operator ∂cell.
We conclude this lecture by giving an explicit formula for ∂cell.

So let X be a cell complex as before, and fix n ≥ 2. To help keep the notation
transparent, in the following we will use the letter λ to index the n-cells of X and
the letter ν to index the (n − 1)-cells. Given an n-cell Eλ, we denote by eλ the
corresponding generator in Ccell

n (X), and similarly eν ∈ Ccell
n−1(X) is the generator

corresponding to an (n− 1)-cell.
The idea behind the cellular boundary formula is that we can get an (n − 1)-

sphere from both an n-cell and an (n− 1)-cell. Indeed, if gλ : Bn → Xn is an n-cell
then fλ := gλ : Sn−1

λ := ∂Bn
λ → Xn−1 is a map from an (n − 1)-cell. Meanwhile if

gν : Bn−1
ν → Xn−1 is an (n − 1)-cell, then if we collapse fν(∂Bn−1

ν ) to a point, the
quotient space

Sn−1
ν := gν(Bn−1

ν )/fν(∂Bn−1
ν )

is also an (n− 1)-sphere3.
Let us denote by

ρ : Xn−1 → Xn−1/Xn−2

the quotient map, and denote by

qν : Xn−1
/
Xn−2 → Sn−1

ν

the quotient map that collapses all the other (n − 1)-spheres in Xn−1/Xn−2 to a
point.

Definition 20.10. Suppose eλ is an n-cell and eν is an (n−1)-cell. We define a map

hλ,ν : Sn−1
λ → Sn−1

ν

to be the composition:

Sn−1
λ

fλ−→ Xn−1 ρ−→ Xn−1
/
Xn−2 qν−→ Sn−1

ν .

We then define the integer
[eλ : eν ] := deg(hλ,ν),

where we are using Definition 15.2. If ∗ ∈ Xn−1/Xn−2 denotes the point correspond-
ing to Xn−2, then since gλ(Bn

λ) intersects at most finitely many cells (part (2) of
Proposition 18.17), for fixed eλ, the map hλ,ν is not the constant map Sn−1

λ → ∗ for
at most finitely many eν .

3For n = 1, the quotient space is a point, not S0. To avoid introducing excessive notation, we will
tacitly assume n ≥ 2 in the following, and leave the case n = 1 as an exercise (the only difference is
notation).
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Theorem 20.11 (The cellular boundary formula). The boundary operator ∂cell : Ccell
n (X)→

Ccell
n−1(X) is given explicitly by the formula

∂celleλ =
∑
ν

[eλ : eν ] · eν .

Note the right-hand side is a well-defined element of Ccell
n−1(X) since hλ,ν is non-

constant (and hence has non-zero degree) for at most finitely many eν .

Proof. Let j : (Xn−1, ∅) ↪→ (Xn−1, Xn−2) denote the inclusion. Consider the follow-
ing diagram, where the two maps labelled δ, δ′ are the connecting homomorphisms
coming from the long exact sequence in reduced homology:

Hn(Bn
λ , S

n−1
λ ) H̃n−1(Sn−1

λ ) H̃n−1(Sn−1
ν )

Hn(Xn, Xn−1) H̃n−1(Xn−1) H̃n−1

(
Xn−1

/
Xn−2

)

Hn−1(Xn−1, Xn−2)

δ′

Hn(gλ)

Hn−1(hλ,ν)

Hn−1(fλ)

δ

∂
Hn−1(j)

Hn−1(ρ)

Hn−1(qν)

∼=

The left-hand square commutes by naturality of the long-exact sequence in reduced
homology, the right-hand square commutes by definition of hλ,ν and the fact that
H̃n−1 is a functor. The left-hand triangle commutes by definition of ∂, and the right-
hand triangle commutes from the proof of Theorem 19.2. The map labelled ∼= is an
isomorphism from Theorem 19.2 as well. Let 〈c〉 be the generator of Hn(Bn

λ , S
n−1
λ ) ∼=

Z such that eλ = Hn(gλ)〈c〉. Then by commutativity,

∂eλ = Hn−1(j) ◦Hn−1(fλ) ◦ δ′〈c〉.

In terms of the basis of Hn−1(Xn−1, Xn−2) given by (n− 1)-cells, the map Hn−1(qν)
is the projection of H̃n−1

(
Xn−1

/
Xn−2

)
onto the Z-summand corresponding to eν .

Thus commutativity of the right-hand square tells us that if ∂eλ =
∑

νmλ,ν eν for
mλ,ν ∈ Z then

mλ,ν = deg(hλ,ν).

This completes the proof.

We will shortly use this to calculate the homology of RPn. First, however, we
need another formula for computing the degree of a map from the sphere to itself.
Suppose

f : (X, p)→ (Z, z), g : (Y, q)→ (Z, z)

are two pointed continuous maps. Then there is a well defined pointed continuous
map

f ∨ g : X ∨ Y → Z ∨ Z
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defined by

(f ∨ g)(x, y) :=

{
(f(x), z), y = q,

(z, g(y)), x = p.

Now consider the continuous maps

Pinch: Sn → Sn ∨ Sn, Fold: Sn ∨ Sn → Sn

that “pinch” and “fold” the sphere as in Figure 20.1. Explicitly, Pinch collapses the
equator Sn−1 to a single point, and, denoting by p the basepoint in Sn, the map Fold
does the following:

Fold(x, y) :=

{
x, y = p,

y, x = p.

Figure 20.1: Pinching and folding.

Lemma 20.12. Let f, g : Sn → Sn be continuous maps. Let h : Sn → Sn denote the
composition

h = Fold ◦ (f ∨ g) ◦ Pinch.

Then
deg(h) = deg(f) + deg(g).

Proof. We use the isomorphism Hn(Sn ∨ Sn) ∼= H̃n(Sn) ⊕ H̃n(Sn) from Corollary
19.5. Let 〈c〉, 〈c′〉 denote elements of Hn(Sn). Then one readily checks that

Hn(Pinch)〈c〉 = (〈c〉, 〈c〉) ,

and
Hn(f ∨ g)

(
〈c〉, 〈c′〉

)
=
(
Hn(f)〈c〉, Hn(g)〈c′〉

)
,

and finally
Hn(Fold)

(
〈c〉, 〈c′〉

)
= 〈c〉+ 〈c′〉.

The claim follows.

Here is the promised calculation of the homology of RPn.

Corollary 20.13. The homology of the real projective space is given by

Hk(RPn) =


Z, if k = 0 or k = n and n is odd,

Z2, for odd 0 < k < n,

0, otherwise.
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Proof. The composition we need to look at is

Sn−1 f−→ RPn−1 q−→ RPn−1
/
RPn−2 = Sn−1.

The map q◦f is a homeomorphism when restricted to each component of Sn−1\Sn−2,
and these two homeomorphisms are obtained from each other by precomposing with
the antipodal map a : Sn−1 → Sn−1. This has degree (−1)n by Corollary 15.7. Thus
by Lemma 20.12

deg(q ◦ f) = deg(Fold ◦ (id ∨ a) ◦ Pinch)

= deg(id) + deg(a)

= 1 + (−1)n.

Thus the cellular chain complex for RPn is given by

0→ Z 2−→ Z 0−→ · · · 2−→ Z 0−→ Z 2−→ Z 0−→ Z→ 0, if n is even,

0→ Z 0−→ Z 2−→ · · · 2−→ Z 0−→ Z 2−→ Z 0−→ Z→ 0, if n is odd.

The result now follows from the fact that Hcell
• (RPn) = H•(RPn).

A more involved application of the cellular boundary formula is on Problem Sheet
K.
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LECTURE 21

Natural transformations and the
Eilenberg-Steenrod Axioms

We begin this lecture by finally define “naturality” properly.

Definition 21.1. Let C and D be two categories, and let S, T : C→ D be two func-
tors. A natural transformation Φ: S → T is a family of morphisms Φ(C) : S(C)→
T (C) for each C ∈ obj(C) such that for any morphism f : A→ B in C the following
diagram commutes:

S(A) T (A)

S(B) T (B)

Φ(A)

S(f) T (f)

Φ(B)

If each morphism Φ(C) is an isomorphism then we say that Φ is a natural isomor-
phism.

If Ψ: R→ S and Φ: S → T are two natural transformations then there it is easy
to check that there is a well-defined natural transformation

Φ ◦Ψ: R→ T, (Φ ◦Ψ)(C) := Φ(C) ◦Ψ(C).

Given any functor T , there is a well-defined natural transformation idT : T → T given
by idT (C) = idT (C) for each object C ∈ C. The following easy lemma is on Problem
Sheet K

Lemma 21.2. Let C and D be two categories and S, T : C→ D two functors. Suppose
Φ: S → T is a natural transformation. Then Φ is a natural isomorphism if and only
if there is a natural transformation Ψ: T → S such that Ψ◦Φ = idS and Φ◦Ψ = idT .

By now you can probably guess what’s coming next. Natural transformations
“look” like morphisms between functors, and that means time for a new category.
Let us suggestively write

Nat(S, T ) := {natural transformations Φ: S → T} .

We would like to define a new category called the functor category whose objects
are all the functors from one category to another, and whose morphisms are the
natural transformations between the functors. Unfortunately we run into a set-
theoretic bug! Recall that in the definition of a category in Lecture 1, we required
the Hom-sets to be actual sets. However sadly Nat(S, T ) need not be a set. Worse,
it does not even have to be a class. The following result is not hard to prove, but
isn’t particularly relevant to our purposes, so I’ll just state it.
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Proposition 21.3. Let C be a small category (i.e. obj(C) is a set). Then for any
category D and any two functors S, T : C→ D, Nat(S, T ) is a set.

This means that we can formally only define the functor category when the domain
category is small.

Definition 21.4. Let C be a small category, and let D be an arbitrary category. The
functor category Fun(C,D) is the category with:

• obj(Fun(C,D)) the class of all functors T : C→ D.

• HomFun(C,D)(S, T ) = Nat(S, T ),

• composition is given by composition of natural transformations.

This is well-defined due to the preceding proposition.

Let us give a concrete example of formulating a (non-trivial) result you probably
all already know in the language of natural isomorphisms.

Theorem 21.5. A finite-dimensional vector space is naturally isomorphic to its dou-
ble dual.

What exactly does this mean? For simplicity, lets work with real vector spaces. If
V is a real vector space then V ∗ := Hom(V,R) denotes the set of all linear functionals
V → R. More categorically, if Vect is the category of all vector spaces, then we can
think of V 7→ V ∗ = Hom(V,R) as a functor Hom(�,R) : Vect → Vect (since R is
itself a real vector space.) Actually this is not quite true: this functor reverses the
direction of morphisms (compare Problem K.5.) Indeed, a morphism in Vect is a
linear transformation A : V → W between two vector spaces. A induces a map
A∗ between the dual spaces, but it goes the “wrong” way round: A∗ : W ∗ → V ∗.
Explicitly, if λ ∈ W ∗ (so λ : W → R is a linear functional) then A∗λ ∈ V ∗ is defined
by

A∗λ(v) := λ(Av), ∀ v ∈ V.

Next semester we will study the idea of functors going the “wrong way round” in
detail when we study cohomology. For now though, let us side-step this issue by
applying the functor twice. So let T : Vect→ Vect denote the functor

T (V ) := Hom(Hom(V,R),R).

One usually denotes T (V ) by V ∗∗ and calls it the double dual. If A : V → W
is a linear map then T (A) : T (V ) → T (W ) is the linear map usually written as
A∗∗ : V ∗∗ →W ∗∗ and defined by

A∗∗(ϕ)(λ) = ϕ(A∗λ) ϕ ∈ V ∗∗, λ ∈W ∗.

As you probably remember from linear algebra, there is a map evV : V 7→ V ∗∗ called
evaluation that simply evaluates a linear functional at a vector:

evV (v)(µ) := µ(v), µ ∈ V ∗.
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We claim that ev is a natural transformation from the identity functor on Vect to T .
This comes down to showing that the following diagram commutes for any pair of
vector spaces V,W and any linear map A : V →W :

V V ∗∗

W W ∗∗

evV

A A∗∗

evW

This is trivial: take λ ∈W ∗ and observe:

A∗∗evV (v)(λ) = evV (v)(A∗λ) = A∗λ(v) = λ(Av) = evAv(λ).

The map evV is easily seen to be an injection V → V ∗∗ but in general if V is infinite-
dimensional then dimV ∗ > dimV and hence evV is not an isomorphism. But if V
is finite-dimensional then hopefully you all know how to prove that dimV = dimV ∗

and thus in this case evV : V → V ∗∗ is an isomorphism. Hence by definition ev
is a natural isomorphism when restricted to the subcategory FiniteVect of finite-
dimensional vector spaces, and this is precisely the statement of Theorem 21.5.

Here are a few more examples of things that we have already proved are natural
transformations.

Proposition 21.6. Let C• : Top → Comp denote the singular chain functor, and
given n ≥ 0 let Cn : Top→ Ab denote the singular chain functor restricted to a single
Cn. Then:

1. The boundary operator in singular homology is a natural transformation Cn →
Cn−1.

2. The barycentric subdivision operator Sd: C• → C• is a natural transformation.

Proof. The first statement is just Proposition 7.20 in fancy language. The second is
is just (13.9).

Recall for any topological space X and any p ∈ X, one has H̃1(X) ∼= H1(X, p),
cf. Corollary 12.22.

Proposition 21.7. Regard π1 and H̃1 as functors Top∗ → Groups (i.e. forget that
H̃1(X) is abelian). Then the Hurewicz map defines a natural transformation π1 →
H̃1.

Proof. This is Problem E.2.

Proposition 21.8. Define a functor R : Top2 → Top2 by R(X,X ′) = (X ′, ∅). Then
the connecting homomorphism δ of the long exact sequence of a pair defines a natural
transformation δ : Hn → Hn−1 ◦R.

Proof. This is just the fact that the right-hand square commutes in the diagram of
Proposition 12.3.
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With the definition of natural transformations out of the way, we can finally intro-
duce the famous Eilenberg-Steenrod axioms for a homology theory. Let R : Top2 →
Top2 be as in the previous proposition.

Definition 21.9 (The Eilenberg-Steenrod Axioms). A homology theory is a se-
quence Hn : Top2 → Ab of functors for n ≥ 0 and a sequence δ = δn : Hn → Hn−1 ◦R
of natural transformations for n ≥ 1 satisfying the following four axioms:

• The homotopy axiom: If f, g : (X,X ′)→ (Y, Y ′) are homotopic mod X ′ (as
in Definition 12.25) then Hn(f) = Hn(g) for all n ≥ 0. Thus Hn factors to
define functors hTop2 → Ab for each n ≥ 0.

• The exact sequence axiom: For every pair (X,X ′) with inclusions ı : (X ′, ∅) ↪→
(X, ∅) and  : (X, ∅) ↪→ (X,X ′), there is an exact sequence

· · · → Hn(X ′)
Hn(ı)−−−→ Hn(X)

Hn()−−−→ Hn(X,X ′)
δ−→ Hn−1(X ′)→ . . . ,

where we abbreviate Hn(X) = Hn(X, ∅) etc.

• The excision axiom: For every pair (X,X ′) and every subset U ⊆ X with
U ⊂ (X ′)◦, the inclusion (X \ U,X ′ \ U) ↪→ (X,X ′) induces an isomorphism

Hn(X \ U,X ′ \ U) ∼= Hn(X,X ′), ∀n ≥ 0.

• The dimension axiom: If {∗} is a one-point space then Hn(∗) = 0 for all
n > 0 and H0(∗) = Z.

There are additionally two “optional” axioms:

• The additivity axiom: Let (Xλ, X
′
λ), λ ∈ Λ be a family of pairs of spaces.

Denote by

ıλ : (Xλ, X
′
λ) ↪→

(⊔
λ∈Λ

Xλ,
⊔
λ∈Λ

X ′λ

)
the inclusion. Then for all n ≥ 0, the map

∑
λ∈Λ

Hn(ıλ) :
⊕
λ∈Λ

Hn(Xλ, X
′
λ)→ Hn

(⊔
λ∈Λ

Xλ,
⊔
λ∈Λ

X ′λ

)
.

is an isomorphism.

• The weak equivalence axiom: If f : (X,X ′)→ (Y, Y ′) is a weak equivalence
(cf. Definition 18.18) then Hn(f) : Hn(X,X ′) → Hn(Y, Y ′) is an isomorphism
for all n ≥ 0.

Some remarks:

1. The last two axioms are less important, and are both sometimes omitted from
the treatment of axiomatic homology theory. The additivity axiom is implied
by the excision axiom whenever Λ is a finite set (see Problem K.6), and thus is
only of interest for infinite disjoint unions.
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2. The weak equivalence axiom is used only to ensure that a homology theory is
uniquely determined by what it does to cell complexes, cf. Theorem 18.19. We
will ignore this axiom for the time being, since we haven’t defined the higher
homotopy groups. In particular, we currently have no way of proving that
singular homology is a homology theory (!) if we insist on this axiom, since we
cannot verify that singular homology satisfies the weak equivalence axiom. We
will discuss this in more detail at the end of Algebraic Topology II (Theorem
46.9.)

3. As currently defined, cellular homology is also not a homology theory, since we
have only defined cellular homology for cell complexes. Nevertheless, it can be
made into a homology theory by arguing as follows. Let us denote by Cell the
category of cell complexes, and denote by I : Cell → Top the inclusion functor.
A more precise version of Theorem 18.19 (this is stated as Theorem 46.15) tell
us that there is a functor Γ: Top → Cell that assigns to any space X a cell
complex Γ(X), together with a natural transformation Φ: I ◦ Γ → idTop such
that Φ(X) : Γ(X)→ X is a weak equivalence. The functor Γ is called a cellular
approximation functor. Extending this to pairs of spaces, one then defines
Hcell
n : Top2 → Ab by first applying Γ: Hcell

n ◦ Γ. The resulting sequence of
homology functors is a genuine homology theory.

4. Many of the properties of singular homology continue to hold for an arbitrary
homology theory. For instance, if X is contractible then by the homotopy axiom
and the dimension axiom one sees Hn(X) = 0 for n > 0 and Hn(X) = Z for
n = 0. A more involved fact is that the Relative Homeomorphism Theorem
19.7 continues to hold; more on this later.

5. The exact sequence axiom implies the long exact sequence of a triple: if X ′′ ⊆
X ′ ⊆ X are subspaces then there is a long exact sequence

. . .Hn(X ′, X ′′)→ Hn(X,X ′′)→ Hn(X,X ′)
δ′−→ Hn−1(X ′, X ′′)→ . . . ,

where the undecorated maps are induced by inclusion and the map δ′ is the
composition

Hn(X,X ′)
δ−→ Hn−1(X ′)→ Hn−1(X ′, X ′′)

Indeed, this follows from the solution of Problem F.4, since the solution given
there (using the commutative braid of Problem F.3) used nothing other than
the exact sequence axiom.

6. Both of the homology theories (singular and cellular) that we have constructed
have arisen from first defining a functor Top2 → Comp and then composing
this with the functor Hn : Comp → Ab that takes the homology of the chain
complex. However this is not part of the axioms, and any proof we gave for
singular/cellular homology that used this are therefore not valid for an arbi-
trary homology theory. This is the reason we proved Problem F.4 using the
commutative braid (as remarked at the end of the solution to Problem F.4,
there is a much quicker proof that is valid only for homology theories that are
the homology of a chain complex.)
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7. The only axiom that guarantees non-triviality of Hn is the dimension axiom,
which at least tells us that the zeroth homology of a point is non-zero. Without
this axiom, a perfectly valid theory would be Hn ≡ 0. Nevertheless, there are
many examples of things that one would like to be a “homology theory” that do
not satisfy the dimension axiom. Two examples are topological K-theory and
symplectic homology1. Thus a generalised homology theory is a sequence
(H•, δ) that satisfies all the axioms apart from the dimension axiom.

Now let us define what it means for two homology theories to be the same.

Definition 21.10. Let (H•, δ) and K•, ε) be two homology theories. A natural
transformation Φ• : (H•, δ) → (K•, ε) is a sequence of natural transformations
Φn : Hn → Kn for n ≥ 0 such that the following diagram commutes for all n ≥ 1 and
all pairs (X,X ′):

Hn(X,X ′) Hn−1(X ′)

Kn(X,X ′) Kn−1(X ′)

δ

Φn(X,X′) Φn−1(X′)

ε

If Φn is a natural isomorphism for each n then we say that the two homology theories
(H•, δ) and K•, ε) are naturally isomorphic.

It is now easy to formulate the big theorem.

Theorem 21.11 (Existence and uniqueness of a homology theory). Singular homol-
ogy is a homology theory. Moreover if (H•, δ) is any homology theory then (H•, δ)
is naturally isomorphic to singular homology.

We can’t really come close to proving this as currently stated. Indeed, as remarked
above, we cannot even show existence, since we don’t know that singular homology
satisfies the weak equivalence axiom. If we drop the weak equivalence axiom then
we have already shown that singular homology satisfies the other axioms. However
the main tool needed to construct a natural isomorphism between singular homology
and an arbitrary homology theory is the higher dimensional analogue of the Hurewicz
Theorem 9.7. We will discuss Theorem 21.11 right at the end of Algebraic Topology
II (cf. Theorem 46.17.)

Nevertheless, the techniques we have developed thus far in the course allow us to
prove the following weaker version.

Theorem 21.12 (Baby Uniqueness Theorem). Suppose (H•, δ) and K•, ε) satisfy the
first four axioms (homotopy, exact sequence, excision and dimension) and suppose
Φ• : (H•, δ)→ K•, ε) is a sequence of natural transformations such that Φ0(∗) : H0(∗)→
K0(∗) is an isomorphism, where ∗ is a one-point space. Then

Φn(X,X ′) : Hn(X,X ′)→ Kn(X,X ′)

is an isomorphism for all pairs (X,X ′) consisting of a finite cell complex X and a
subcomplex X ′.

1The former is the content of next semester’s student seminar entitled “Vector Bundles in Algebraic
Topology”. The latter is my favourite (generalised) homology theory.
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In other words, if we already have a natural transformation between two homology
theories, it suffices to check it’s an isomorphism on a one-point space to conclude it’s
an isomorphism on any finite cell complex. Of course, by assumption one always has
H0(∗) ∼= Z ∼= K0(∗), but the hypotheses of the theorem are asserting much more:
that there exists a natural transformation between the two homology theories that
realises this isomorphism. This theorem is not too hard to prove, and we will do so
next lecture.
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LECTURE 22

Free chain complexes

In this lecture we first prove Theorem 21.12. Our proof will use the Relative Home-
omorphism Theorem 19.7, which is valid for an arbitrary homology theory. Let us
begin by stating this precisely.

Theorem 22.1 (The Relative Homeomorphism Theorem Reborn). Let (H•, δ) de-
note a homology theory satisfying the first four axioms. Let f : (X,X ′) → (Y, Y ′)
be a relative homeomorphism. Assume that X is compact and that Y is compact
Hausdorff, and that X ′ and Y ′ are closed in X and Y respectively. Assume further
that there exists a neighbourhood U of X ′ in X such that X ′ is a strong deformation
retract of U , and a neighbourhood V of Y ′ in Y such that Y ′ is a strong deformation
retract of V . Then

Hn(f) : Hn(X,X ′)→ Hn(Y, Y ′) is an isomorphism for all n ≥ 0.

Proof. Go through the proof of the Relative Homeomorphism Theorem 19.7 and
check we only used the axioms.

We now prove Theorem 21.12.

Proof. We prove the theorem in three steps. In this proof, all vertical maps are
induced by Φ, and we won’t label them on the diagrams. The moral of the proof is:
use the Five Lemma five times.

1. We first prove the result for X = S0 and X ′ = ∅. We think of S0 as the union
of two points p and q, and consider the following diagram:

Hn(q) Hn(p ∪ q, p)

Kn(q) Kn(p ∪ q, p)

The two horizontal maps are excision isomorphisms, and the left-hand vertical map is
an isomorphism by hypothesis for n = 0 and by the dimension axiom for n > 0. Thus
the right-hand vertical map is also an isomorphism. We now consider the diagram:

Hn+1(S0, p) Hn(p) Hn(S0) Hn(S0, p) Hn−1(p)

Kn+1(S0, p) Kn(p) Kn(S0) Kn(S0, p) Kn−1(p)

δ

ε
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The rows are exact by the exact sequence axiom. All the vertical maps apart from
the middle one are isomorphisms. Thus the middle one is too by the Five Lemma
(Proposition 11.3).

2. We now prove the result for an arbitrary sphere Sk. Let us inductively assume
that Φn(Sk−1) : Hn(Sk−1) → Kn(Sk−1) is an isomorphism for all n ≥ 0. Since Bk

is contractible, by the homotopy axiom, the dimension axiom and the hypotheses,
the map Φn(Bk) : Hn(Bk) → Kn(Bk) is an isomorphism. Then we apply the Five
Lemma again to the following diagram:

Hn(Sk−1) Hn(Bk) Hn(Bk, Sk−1) Hn−1(Sk−1) Hn−1(Bk)

Kn(Sk−1) Kn(Bk) Kn(Bk, Sk−1) Kn−1(Sk−1) Kn−1(Bk)

δ

ε

Again, the rows are exact and all vertical maps apart from the middle one are iso-
morphisms. Thus the middle one is too. Now consider the following diagram:

Hn(Bk, Sk−1) Hn(Sk, p)

Kn(Bk, Sk−1) Kn(Sk, p)

Hn(f)

Kn(f)

The horizontal maps come from a relative homeomorphism (Bk, Sk−1) → (Sk, p),
and is thus an isomorphism by the Relative Homeomorphism Theorem. We have
just shown that the left-hand map is an isomorphism, and hence the right-hand
vertical map is too. Now we apply the Five Lemma again to this diagram:

Hn+1(Sk, p) Hn(p) Hn(Sk) Hn(Sk, p) Hn−1(p)

Kn+1(Sk, p) Kn(p) Kn(Sk) Kn(Sk, p) Kn−1(p)

δ

ε

3. We now prove the theorem for a pair (X,X ′) by induction on the number of
cells of X. We have already done the case where X has one cell, so let us assume
that Φn(Y, Y ′) : Hn(Y, Y ′) → Kn(Y, Y ′) is an isomorphism for all n ≥ 0 and for
any cell complex Y with at most N − 1 cells. Let X be a cell complex with N
cells and X ′ a subcomplex. If dimX = k, pick a specific k-cell of X and let Z
denote the complement of this cell. Then Z has N − 1 cells, and there is a relative
homeomorphism

f : (Bk, Sk−1)→ (X,Z).

We now consider the diagram:

Hn(Bk, Sk−1) Hn(X,Z)

Kn(Bk, Sk−1) Kn(X,Z)

Hn(f)

Kn(f)
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The horizontal maps are isomorphisms and the left-hand vertical map is an isomor-
phism for all n ≥ 0, and thus the same is true of the right-hand vertical map. Next,
apply the Five Lemma to this diagram:

Hn+1(X,Z) Hn(Z) Hn(X) Hn(X,Z) Hn−1(Z)

Kn+1(X,Z) Kn(Z) Kn(X) Kn(X,Z) Kn−1(Z)

δ

ε

Thus Φn(X) : Hn(X)→ Kn(X) is an isomorphism for all n ≥ 0. Similarly Φn(X ′) : Hn(X ′)→
Kn(X ′) is an isomorphism for every n ≥ 0. Finally, we apply the Five Lemma a fifth
time to the diagram:

Hn(X ′) Hn(X) Hn(X,X ′) Hn−1(X ′) Hn−1(X)

Kn(X ′) Kn(X) Kn(X,X ′) Kn−1(X ′) Kn−1(X)

δ

ε

Thus Φn(X,X ′) : Hn(X,X ′) → Kn(X,X ′) is also an isomorphism. This completes
the proof.

Remark 22.2. If we knew our homology theories arose from taking the homology
of a chain complex, one could now invoke Theorem 16.22 to deduce the same result
for any cell complex (rather than just finite ones). In general, the excision axiom
and the additivity axiom allows one to prove (roughly speaking) that a homology
theory does indeed commute with filtered colimits, but this is a somewhat involved
argument.

We now embark upon some more homological algebra. Our journey will culminate
at the end of the next lecture with the famous Acyclic Models Theorem, which will
allow us to give new and simpler proofs of various statements from the course (eg.
the proof that singular homology satisfies the homotopy axiom). We begin with the
following lemma, whose proof is similar to the last part of Problem F.6.

Lemma 22.3. Let F be a free abelian group. Suppose g : B → C is a surjective
homomorphism of abelian groups and h : F → C is a homomorphism. Then there
exists a homomorphism f : F → B such that gf = h.

F

B C 0

f
h

g

Proof. Let X be a basis of F . For each x ∈ X, choose bx ∈ B such that g(bx) = h(x).
By Lemma 7.2 there exists a unique homomorphism f : F → B with the property
that f(x) = bx for all x ∈ X. Then both gf and h agree on X, and hence gf = h as
desired.
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This result implies the following statement.

Proposition 22.4. Suppose we have a commutative diagram of abelian groups where
the bottom row is exact, that the top row satisfies ji = 0, and that A is free abelian.

A B C

A′ B′ C ′

i j

g h

i′ j′

Then there exists a homomorphism f : A→ A′ making the first square commute:

A B C

A′ B′ C ′

i

f

j

g h

i′ j′

Proof. We claim that im gi ⊆ im i′. Indeed, by exactness im i′ = ker j′, and thus it
suffices to show that j′gi = 0. But j′gi = hji by commutativity. Since ji = 0 by
assumption, the claim follows. This means we have a diagram:

A

A′ im i′ 0

gi

i′

Now apply Lemma 22.3 to obtain the desired homomorphism f : A→ A′.

Proposition 22.4 has a rather surprising consequence, which we now explain.
Suppose C• and D• are two chain complexes. A chain map f : C• → D• induces
maps Hn(f) : Hn(C•)→ Hn(D•) for each n ≥ 0. But when can we go the other way?

Namely, suppose we start with a homomorphism h : H0(C•) → H0(D•). We are
interested in obtaining criterion for the existence of a chain map f : C• → D• such
that

H0(f) = h. (22.1)

Let us say that f is a chain map over h if (22.1) holds. Here are two more definitions.

Definition 22.5. A chain complex C• is called free if each group Cn is a free abelian
group.

Definition 22.6. A chain complex C• is non-negative if Cn = 0 for all n < 0. Thus
the singular chain complex is always non-negative. A non-negative chain complex C•
is acyclic in positive degrees if Hn(C•) = 0 for all n > 0.

The next result is sometimes called the Comparison Theorem in homological
algebra1.

1This is actually a weaker version than the usual “Comparison Theorem” where the top complex is
assumed to a complex of projectives rather than a free complex.
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Theorem 22.7. Suppose (C•, ∂) and (D•, ∂
′) are two non-negative chain complexes.

Assume that C• is free and that D• is acyclic in positive degrees. Then given any
homomorphism h : H0(C•)→ H0(D•), there always exists a chain map f : C• → D•
over h. Moreover if f and g are two chain maps over h then f and g are chain
homotopic.

Remark 22.8. In particular, if C• is free and D• is acyclic in positive degrees, then
a chain map f : C• → D• is determined up to chain homotopy by the map H0(f).

Proof. Since Cn = 0 for all n < 0, H0(C•) is the cokernel of ∂ : C1 → C0, and
similarly for H0(D•). Denote by ε : C0 → H0(C•) and ε′ : D0 → H0(D•) the two
quotient maps. Note that the extended complex

· · · → D2
∂′−→ D1

∂′−→ D0
ε′−→ H0(D•)→ 0

is an acyclic complex (its homology is zero in every degree.) Our goal is to find maps
fn : Cn → Dn such that the entire diagram below commutes:

. . . C2 C1 C0 H0(C•) 0

. . . D2 D1 D0 H0(D•) 0

∂

f2

∂

f1

ε

f0 h

∂′ ∂′ ε′

We argue by induction on n ≥ 0. For the case n = 0, we use Lemma 22.3 with the
diagram

C0

D0 H0(D•) 0

f0
h◦ε

ε′

For the inductive step, we apply Proposition 22.4 to the diagram

Cn+1 Cn Cn−1

Dn+1 Dn Dn−1

∂ ∂

fn fn−1

∂′ ∂′

Now suppose we are given two such chain maps f and g over h. We wish to construct
maps Pn : Cn → Dn+1 for n ≥ −1 such that

∂′Pn + Pn−1∂ = fn − gn.

Define P−1 = 0. Now consider the diagram:

C0 C0 0

D1 D0 H0(D•)

id

f0−g0 0

∂′
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Proposition 22.4 applies to give us the desired map P0 : C0 → D1. Abbreviate kn =
fn − gn − Pn−1∂. For the inductive step we use the diagram

Cn Cn 0

Dn+1 Dn Dn−1

id

kn 0

∂′
∂′

This diagram commutes, since

∂′kn = ∂′(fn − gn)− (∂′Pn−1)∂

= ∂′(fn − gn)− (fn−1 − gn−1 − Pn−2∂)∂

= ∂′(fn − gn)− (fn−1 − gn−1)∂

= 0

as ∂2 = 0 and f − g is a chain map. Thus we can apply Proposition 22.4 again to
get a map Pn : Cn → Dn+1. This completes the proof.

Corollary 22.9. Suppose (C•, ∂) and (D•, ∂
′) are two non-negative chain com-

plexes. Assume that C• and D• are both free and acyclic in positive degrees. Assume
we are given an isomorphism h : H0(C•)→ H0(D•). Then every chain map f over h
is a chain equivalence.

Proof. We apply Theorem 22.7 twice to obtain chain maps f : C• → D• over h and
g : D• → C• over h−1. Then g ◦ f : Cn → Cn is a chain map over h−1 ◦ h = idH0(C•).
But another obvious chain map over idH0(C•) is idC• . By the last statement of
Theorem 22.7, g ◦ f is chain homotopic to idC• . Similarly f ◦ g is chain homotopic
to idD• . Thus f is a chain equivalence as desired.
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LECTURE 23

The Acyclic Models Theorem

In this final lecture we state and prove the Acyclic Models Theorem. The main
ideas were all contained in Theorem 22.7 and Corollary 22.9 from the last lecture.
The formalism below will seem somewhat complicated, but all we are really doing is
carrying out the constructions above in a more general setting.

Definition 23.1. Let C be a category. A family of models for C is simply an
indexed subset M = {Mλ | λ ∈ Λ} ⊆ obj(C).

Definition 23.2. Let C be a category with family of models M = {Mλ | λ ∈ Λ}.
Suppose T : C → Ab is a functor. A T -model set X is a choice of element xλ ∈
T (Mλ) for each λ:

X = {xλ ∈ T (Mλ) | λ ∈ Λ}.

Definition 23.3. Let C be a category with a family of models M = {Mλ | λ ∈ Λ}.
Suppose T : C→ Ab is a functor. We say that T is free with basis in M if:

1. T (C) is a free abelian group for every C ∈ obj(C),

2. There is a T -model set X = {xλ ∈ T (Mλ) | λ ∈ Λ} such that for every object
in C the set

{T (f)(xλ) | f ∈ Hom(Mλ, C), λ ∈ Λ}

is a basis for T (C).

We call X a model basis for T .

Example 23.4. Fix n ≥ 0. Consider a family of models for Top consisting of just
one model M = {∆n}. Consider now the functor Cn : Top → Ab that assigns a
topological space X the free abelian group of singular n-chains Cn(X). We claim
that Cn is free with basis in {∆n}. The first condition is by definition, so we need
only verify the second. For this, recall (see Lecture 13) we denote by `n : ∆n → ∆n

the identity map, thought of as a singular n-simplex in ∆n. Then the set {`n} is a
Cn-model set. We claim that {`n} is a model basis. Indeed, if σ : ∆n → X is any
singular n-simplex then (thinking of σ as a continuous map from ∆n to X), we have

Cn(σ)(`n) = σ#
n `n = σ

(see (13.4)). Since Cn(X) has basis the singular n-simplices in X, we have that

{Cn(σ)(`n) | σ : ∆n → X continuous}

is a basis for Cn(X).

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Proposition 23.5. Let C be a category with family of models M = {Mλ | λ ∈ Λ}.
Suppose S, T : C→ Ab are functors, and assume T is free with basis in M. Let

{xλ ∈ T (Mλ) | λ ∈ Λ}

denote a model basis for T . Choose elements yλ ∈ S(Mλ) for each λ ∈ Λ, and set

Y := {yλ ∈ S(Mλ) | λ ∈ Λ}

Then there exists a unique natural transformation Φ: T → S such that

Φ(Mλ)(xλ) = yλ, ∀λ ∈ Λ.

The following picture might help you remember the statement:

T S

X Y

Φ

xλ 7→yλ

Proof. Let us first check that Φ is unique if it exists. For fixed λ ∈ Λ and a fixed
object C ∈ obj(C), we obtain a commutative diagram for every morphism f : Mλ →
C:

T (Mλ) T (C)

S(Mλ) S(C)

T (f)

Φ(Mλ) Φ(C)

S(f)

Thus if xλ ∈ X we have by the hypothesis on Φ that

Φ(C) ◦ T (f)(xλ) = S(f) ◦ Φ(Mλ)(xλ) = S(f)(yλ).

Since the family {T (f)(xλ)} forms a basis of (and hence generates) T (C), it follows
that each homomorphism Φ(C) is uniquely determined. Since C was an arbitrary
object, it follows that Φ is unique. Now let us construct Φ. Again, fix an ob-
ject C of C. We first define Φ(C) on basis elements {T (f)(xλ)} by declaring that
Φ(C)

(
T (f)(xλ)

)
:= S(f)(yλ). Then since T (C) is free abelian, by Lemma 7.2 there

is a unique homomorphism Φ(C) : T (C) → S(C) that extends this map. It remains
to show that Φ is a natural transformation. For this, take a morphism g : A→ B in
C. We need to prove the following diagram commutes:

T (A) T (B)

S(A) S(B)

T (g)

Φ(A) Φ(B)

S(g)

Since T (A) is free abelian, it suffices to evaluate both sides on a typical basis element
T (f)(xλ) for some λ ∈ Λ and f : Mλ → A. Then

S(g) ◦ Φ(A)
(
T (f)(xλ)

)
= S(g)S(f)yλ = S(g ◦ f)(yλ).
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But also going the other way round:

Φ(B) ◦ T (g)
(
T (f)(xλ)

)
= Φ(B) ◦ T (g ◦ f)(xλ) = S(g ◦ f)(yλ).

Thus Φ is indeed a natural transformation, and this completes the proof.

We now prove a generalisation of Proposition 22.4 to this setting.

Proposition 23.6. Let C be a category with family of models M. Suppose we are
given six functors

Ti, Si : C→ Ab, i = 1, 2, 3.

together with six natural transformations as pictured below:

T1 T2 T3

S1 S2 S3

Φ1 Φ2

Θ1 Θ2

Ψ1 Ψ2

Assume that:

1. Assume that for every object C ∈ obj(C) the composition Φ2(C)◦Φ1(C) : T1(C)→
T3(C) is the zero homomorphism.

2. The bottom row is exact on M, in the sense that for every model M ∈M one
has im Ψ1(M) = ker Ψ2(M).

3. The diagram commutes for every object C of C.

4. T1 is free with basis in M.

Then there exists a natural transformation Υ: T1 → S1 such that the first square
commutes for every object of C.

T1 T2 T3

S1 S2 S3

Φ1

Υ

Φ2

Θ1 Θ2

Ψ1 Ψ2

The trickiest thing in Proposition 23.6 is the statement. It is easiest to see this
as a direct generalisation of Proposition 22.4 where we use functors instead of maps.
Indeed, if C had exactly one object and only the identity morphism, then Proposition
23.6 would reduce to Proposition 22.4. But in general Proposition 23.6 is much
stronger: the important bit is that we only require the bottom row to be exact on
M. If you think back to Example 23.4, this can often be a massive simplification if
M is very small compared to obj(C).

Proof. Let X = {xλ ∈ T1(Mλ) | λ ∈ Λ} denote a model basis for T1. Then for
each λ ∈ Λ we have a commutative diagram in Ab that satisfies the hypotheses of
Proposition 22.4:

T1(Mλ) T2(Mλ) T3(Mλ)

S1(Mλ) S2(Mλ) S3(Mλ)
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Thus by Proposition 22.4 we obtain a homomorphism T1(Mλ)→ S1(Mλ):

T1(Mλ) T2(Mλ) T3(Mλ)

S1(Mλ) S2(Mλ) S3(Mλ)

Set yλ ∈ S1(Mλ) denote the image of xλ under this map. By Proposition 23.5 we
obtain a natural transformation Υ: T1 → S1 such that Υ(Mλ)(xλ) = yλ for each
λ ∈ Λ. It remains to check that the desired diagram commutes. For this consider

zλ := Ψ1(Mλ)(yλ), Z := {zλ ∈ S2(Mλ) | λ ∈ Λ}.

Then both Θ1 ◦ Φ1 and Ψ1 ◦ Υ are natural transformations T1 → S2 that send xλ
to zλ. The uniqueness part of Proposition 23.5 then implies that Θ1 ◦ Φ1 = Ψ1 ◦Υ.
This completes the proof.

The main result of today’s lecture is basically the “models” version of Theorem
22.7. This means we need to study functors with values in Comp. So suppose
T• : C → Comp is a functor. Thus for each C ∈ obj(C) we obtain a chain complex
T•(C). Given n ∈ Z, let Tn : C → Ab denote the functor given by C 7→ Tn(C). As
with the case of a single chain complex, we say that T• is non-negative if Tn(C) = 0
for all n < 0, and we say an object C ∈ obj(C) is T -acyclic in positive degrees if
Hn(T•(C)) = 0 for all n > 0.

A natural transformation Φ: T• → S• between two functors T•, S• : C → Comp
is usually called a natural chain map. There is an analogous notion of a natural
chain homotopy.

Definition 23.7. Suppose T•, S• : C→ Comp are two functors and Φ,Ψ: T• → S• are
two natural chain maps (i.e. natural transformations). A natural chain homotopy
between Φ and Ψ is a sequence of natural transformations Υn : Tn → Sn+1 such that

∂′Υn + Υn−1∂ = Φn −Ψn

for every n. Here ∂ is the boundary operator of T• and ∂′ is the boundary operator of
S•. Explicitly, this means for every object C of C, if we denote by ∂C the boundary
operator of T•(C) and ∂′C the boundary operator of S•(C), we have

∂′CΥn(C) + Υn−1(C)∂C = Φn(C)−Ψn(C)

as homomorphisms Tn(C)→ Sn(C).

Similarly, a natural chain equivalence Φ: T• → S• is a natural chain map with
the property that there exists another natural chain map Ψ: S• → T• such that Ψ◦Φ
is naturally chain homotopic to idT• and Φ ◦Ψ is naturally chain homotopic to idS• .

Now we introduce the functor-valued version of (22.1). Suppose T•, S• : C →
Comp are two functors. Then H0 ◦T• and H0 ◦S• are two functors C→ Ab, given by
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C 7→ H0(T•(C)) and C 7→ H0(S•(C)) respectively. Suppose we are given a natural
transformation

Θ: H0 ◦ T• → H0 ◦ S•.

We can then ask the question: when does there exist a natural chain map Φ: T• → S•
such that H0(Φ) = Θ? (This is of course a direct generalisation of asking when (22.1)
held last lecture). The Acyclic Models Theorem gives an answer.

Theorem 23.8 (The Acyclic Models Theorem). Let C be a category with models
M. Assume that S•, T• : C → Comp are non-negative functors. Assume that for all
n ≥ 0, Tn is free with basis contained in M. Assume that each model M ∈ M is
S•-acyclic in positive degrees. If Θ: H0 ◦ T• → H0 ◦ S• is a natural transformation
then there exists a natural chain map Φ: T• → S• over Θ. Moreover any two such
natural chain maps are naturally chain homotopic.

Corollary 23.9. Assume instead that for all n ≥ 0, both Sn and Tn are free with
basis contained in M, and that each model M ∈ M is both S•-acyclic in positive
degrees and T•-acyclic in positive degrees. Then if Θ: H0 ◦T• → H0 ◦S• is a natural
equivalence then every natural chain map Φ over Θ is a natural chain equivalence.

Again, by far the hardest part of this theorem is understanding the statement!
The proof is basically identical to the proof of Theorem 22.7 and Corollary 22.9.

Proof of Theorem 23.8 and Corollary 23.9. We prove both the two results in three
steps.

1. As in the proof of Theorem 22.7, our goal is to construct natural transforma-
tions Φn : Tn → Sn such that the following diagram commutes.

. . . T2 T1 T0 H0(T•) 0

. . . S2 S1 S0 H0(S•) 0

∂ ∂

Φ2

∂

Φ1 Φ0 Θ

∂′ ∂′ ∂′

For n = 0, we have the following picture:

T0 H0(T•) 0

S0 H0(S•) 0

Θ 0

The bottom row is exact because H0(S•(C)) is the cokernel of S1(C) → S0(C).
Thus Proposition 23.6 gives us a natural transformation Φ0 : T0 → S0 such that the
diagram commutes:

T0 H0(T•) 0

S0 H0(S•) 0

Φ0 Θ 0
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Now we inductively define Φn : Tn → Sn for n ≥ 1. Indeed, if we have constructed
Φn then we have a diagram

Tn+1 Tn Tn−1

Sn+1 Sn Sn−1

∂ ∂

Φn Φn−1

∂′ ∂′

By assumption the bottom row is exact for every model M , and thus as Tn+1 is free,
Proposition 23.6 applies to give us the desired Φn+1 : Tn+1 → Sn+1.

2. Now suppose we have two such maps Φ,Ψ: T• → S•. We need to find natural
transformations Υn : Tn → Sn+1 for all n ≥ −1 such that

∂′Υn + Υn−1∂ = Φn −Ψn.

We define Υ−1 = 0 and proceed inductively. Let Ξn := Φn − Ψn. Then we have a
diagram:

T0 T0 0

S1 S0 H0(S•)

id

Ξ0 0

∂′

Again, Proposition 23.6 applies to give us the desired map Υ0 : T0 → S1. For the
inductive step we use the diagram

Tn Tn 0

Sn+1 Sn Sn−1

id

Ξn−Υn−1◦∂ 0

∂′

We need to show this diagram commutes to apply Proposition 23.6. But by induction:

∂′(Ξn −Υn−1∂) = ∂′Ξn − (∂Υn−1)∂

= ∂′Ξn − (Ξn−1 −Υn−2∂)∂

= ∂′Ξn − Ξn−1∂

= 0

as ∂2 = 0 and Ξ• is a chain map.
3. Finally we prove Corollary 23.9. In this case Θ is a natural isomorphism,

and hence there exists a natural transformation Π: H0 ◦ S• → H0 ◦ T• such that
Π◦Θ = idH0◦T and Θ◦Π = idH0◦S . We then have two natural chain maps Φ : T• → S•
and Ψ: S• → T• over from Θ and Π respectively. This gives us two natural chain
maps over Π ◦ Θ: the identity idT• : T• → T• and Ψ ◦ Φ: T• → T•. By what we
have already proved, these two natural chain maps are naturally chain homotopic.
Similarly Φ ◦ Ψ: S• → S• is naturally chain homotopic to idS• : S• → S•. Thus
Φ: T• → S• is natural chain equivalence. This completes the proof.
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With all this heavy lifting out of the way, let us now reap the benefits. Recall
Proposition 8.5:

Proposition 23.10. Let X be a topological space and define inclusions ı,  : X ↪→
X × I by

ı(x) := (x, 0), (x) := (x, 1).

Then
Hn(ı) = Hn(), ∀n ≥ 0.

We can now give a cute easy proof.

Proof. We give Top models M = {∆n | n ≥ 0}. Then by Example 23.4, for all
n ≥ 0 the singular chain functor C• : Top → Comp has the property that Cn is
free with basis in Mn := {∆n} ⊂ M. Define another functor S• : Top → Comp by
S•(X) = C•(X×I). Since ∆n×I is convex, by Corollary 13.3, every model ∆n is S•-
acyclic in positive degrees (note this argument is not circular, see Remark 13.4.) Now
the Acyclic Models Theorem tells us that in order to deduce that ı#, # : C•(X) →
C•(X × I) are naturally chain homotopic (and hence in particular induce the same
map on homology, cf. Proposition 10.24) it suffices to show that H0(ı) = H0(). But
this is trivial.

Here is an even simpler application of the Acyclic Models Theorem.

Proposition 23.11. Let Φ,Ψ: C• → C• denote natural transformations from the
singular chain functor to itself. Assume that Φ0 = Ψ0. Then there is a natural chain
homotopy from Φ to Ψ.

Proof. Apply the Acyclic Models Theorem with S• = T• both equal to the singular
chain functor, and with models {∆n | n ≥ 0} as above and with Θ = H0(Φ) =
H0(Ψ).

We conclude with a much nicer proof of Theorem 13.11:

Theorem 23.12. Let X be a topological space and consider the barycentric division
operator Sd: C•(X)→ C•(X). Then Sd is naturally chain homotopic to the identity
(and hence induces an isomorphism on homology).

Proof. Immediate from Proposition 23.11 because Sd is a natural (this is (13.3)) and
Sd0 is the identity.

This is the end of Algebraic Topology I. See you next semester!

Proposition 23.13. Let C be a category with modelsM. Assume that S•, T• : C→
Comp are non-negative functors. Assume that for all n ≥ 0, Tn is free with basis
contained in M. Assume that each model M ∈ M is S•-acyclic in positive degrees.
Assume that Φ0 : S0 → T0 is a natural transformation.
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LECTURE 24

Tensor products and a taste of Tor

Welcome to Algebraic Topology II! We have lots to get through this semester, so
rather than a long and fancy introduction, this time we’ll get straight on to our first
topic: universal coefficients.

Unfortunately before the exciting topology can start, we need a rather lengthy
algebraic prelude on tensor products and the Tor functor, which will take all of
today’s lecture.

Definition 24.1. Let A and B be two abelian groups. Their tensor product is
the abelian group A⊗B, which has:

• Generators: all ordered pairs (a, b) where a ∈ A and b ∈ B.

• Relations if a, a′ ∈ A and b, b′ ∈ B then

(a+ a′, b) = (a, b) + (a′, b), and (a, b+ b′) = (a, b) + (a, b′).

More formally, A ⊗ B is the quotient F/N where F is the free abelian group with
basis A × B and N is the subgroup of F generated by all the relations. We denote
the coset (a, b) +N by a⊗ b.

Thus a typical element x of A⊗B can be written as a sum

x =
∑
i

mi ai ⊗ bi, ai ∈ A, bi ∈ B, mi ∈ Z.

Actually one can always dispense with the mi, since for any m ∈ Z and a ∈ A, b ∈ B,
as element of A⊗B one has

m(a⊗ b) = (ma)⊗ b = a⊗ (mb),

as can be easily seen from the relations.
This definition of A⊗B is rather concrete, but it is presumably not clear to most

of you what the point is. We now show that the tensor product can also be specified
via a universal property.

Definition 24.2. Let A,B,C be abelian groups. A bilinear function ϕ : A×B →
C is a function such that for all a, a′ ∈ A and all b, b′ ∈ B,

ϕ(a+ a′, b) = ϕ(a, b) + ϕ(a′, b), and ϕ(a, b+ b′) = ϕ(a, b) + ϕ(a, b′).

As an example, the natural map u : A× B → A⊗ B that sends (a, b) 7→ a⊗ b is
bilinear.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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Definition 24.3. Suppose we are given three abelian groups A,B, T and a bilinear
map η : A×B → T . Consider the following universal property: Then we require that
if C is any abelian group and ϕ : A × B → C is a bilinear map, then there exists a
unique homomorphism f : T → C such that the following diagram commutes:

A×B T

C

η

ϕ f

As with all universal properties1, if such a pair (T, η) exist, they are unique up to
isomorphism. Let us verify that (A⊗B, u) does indeed solve this universal property.

Lemma 24.4. The tensor product A⊗B together with the bilinear map u : A×B →
A⊗B, u(a, b) = a⊗ b, satisfies the universal property from Definition 24.3.

Proof. Let ϕ : A × B → C be a bilinear function. Recall A ⊗ B = F/N , where F
is free abelian with basis A × B. We first extend ϕ : A × B → C by linearity to
a map ϕ̃ : F → C (cf. Lemma 7.2). The relations that generate N are such that
N ⊂ ker ϕ̃, and hence ϕ̃ factors to define a homomorphism f : F/N → C such that
(a, b) + N 7→ ϕ̃(a, b) = ϕ(a, b), that is, f(a ⊗ b) = ϕ(a, b). Moreover the map f is
unique, since the set of all the a⊗ b generate A⊗B.

Being able to use universal properties makes the next result very transparent.

Proposition 24.5. Let f : A → A′ and g : B → B′ be two homomorphisms. Then
there is a unique homomorphism A ⊗ B → A′ ⊗ B′, denoted by f ⊗ g, with the
property that

(f ⊗ g)(a⊗ b) = fa⊗ gb, ∀ a ∈ A, b ∈ B.
Moreover if f ′ : A′ → A′′ and g′ : B′ → B′′ are two other homomorphisms then
(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g).

Proof. The function ϕ : A × B → A′ ⊗ B′ defined by ϕ(a, b) := fa ⊗ gb is bilinear.
Thus by Lemma 24.4 there is a unique homomorphism A⊗B → A′⊗B′ which maps
a⊗ b 7→ ϕ(a, b) = fa⊗ gb. This is our desired homomorphism f ⊗ g. This proves the
first part. For the second part, we define a bilinear map ϕ : A×B → A′′ ⊗B′′ by

ϕ(a, b) = (f ′(fa))⊗ g′(gb)).

Then observe that both (f ′⊗ g′) ◦ (f ⊗ g) and (f ′ ◦ f)⊗ (g′ ◦ g) fit on the dashed line
to make the following diagram commute:

A×B A⊗B

A′′ ⊗B′′

u

ϕ

Thus by the uniqueness part of Lemma 24.4, we must have (f ′ ⊗ g′) ◦ (f ⊗ g) =
(f ′ ◦ f)⊗ (g′ ◦ g). This completes the proof.

1To check how much you forgot over the Winter Vacation: prove that there is a most one pair (T, f)
satisfying the universal property from Definition 24.3.
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This means we can view the tensor product as a functor.

Corollary 24.6. Let A be an abelian group. There is a functor T : Ab→ Ab such
that T (B) = A⊗B and if f : B → C then T (f) = idA ⊗ f : A⊗B → A⊗ C.

Proof. Let f : B → C and g : C → D. By the second part of Proposition 24.5, we
have

(idA ⊗ g) ◦ (idA ⊗ f) = idA ⊗ (g ◦ f),

which shows that T preserves compositions. The fact that idA ⊗ idB = idA⊗B is
obvious.

We normally denote the functor T by A ⊗ �. Similarly, given a fixed abelian
group B, there is a functor � ⊗ B : Ab → Ab that sends A 7→ A ⊗ B, and sends
morphisms f : A→ C to f ⊗ idB : A⊗B → C ⊗B.

We briefly mentioned additive functors last semester. Let me remind you of the
definition.

Definition 24.7. A functor T : Ab → Ab is said to be additive if T (f + g) =
T (f) + T (g) for any two morphisms f, g : A→ B.

An additive functor has the nice property that T (0) = 0, where 0 denotes either
the zero group or the zero homomorphism.

The next result summarises some more properties of the tensor product. The
proofs of parts (1)-(4) are all trivial. The proofs of (5) and (6) are slightly harder,
and they are relegated to Problem Sheet L.

Proposition 24.8.

1. There is an isomorphism A ⊗ B ∼= B ⊗ A taking a ⊗ b to b ⊗ a. The functors
A⊗� and �⊗A are isomorphic.

2. The functors A⊗� and �⊗A are additive.

3. If f : B → B is multiplication by an integer m, fb = mb for all b ∈ B, then
idA ⊗ f : A ⊗ B → A ⊗ B is also multiplication for m (and similarly for f ⊗
idA : B ⊗A→ B ⊗A.)

4. For any abelian group A, the map Z ⊗ A → A given by m ⊗ a 7→ ma is an
isomorphism. Denoting this map by Φ(A), the resulting family Φ defines a
natural equivalence Z⊗�→ idAb in Ab.

5. If A is an abelian group and {Bλ | λ ∈ Λ} is a (possibly uncountable) family of
abelian groups then there is an isomorphism

A⊗
⊕
λ∈Λ

Bλ ∼=
⊕
λ∈Λ

(A⊗Bλ).

6. If F and F ′ are free abelian groups then so is F ⊗ F ′.

Now for an algebraic definition.
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Definition 24.9. Let T : Ab→ Ab be an additive functor. We say that T is exact
if given any exact sequence

A
f−→ B

g−→ C,

the corresponding sequence

T (A)
T (f)−−−→ T (B)

T (g)−−−→ T (C)

is also exact. We say that T is left exact if given any exact sequence of the form

0→ A
f−→ B

g−→ C,

the corresponding sequence

0→ T (A)
T (f)−−−→ T (B)

T (g)−−−→ T (C)

is also exact (That is, a left exact functor T preserves an exact sequence A
f−→ B

g−→ C
if the first map f is injective). Similarly we say that T is right exact if if given any
exact sequence of the form

A
f−→ B

g−→ C → 0,

the corresponding sequence

T (A)
T (f)−−−→ T (B)

T (g)−−−→ T (C)→ 0

is also exact. (That is, a right exact functor T preserves an exact sequence A
f−→

B
g−→ C if the second map g is surjective).

Thus an exact functor is both left exact and right exact.

Proposition 24.10. The functors A⊗� and �⊗A are both right exact.

Proof. We will prove A⊗� is right exact. The proof for �⊗ A is almost identical.

Suppose B
f−→ C

g−→ D → 0 is exact. We must show that

A⊗B idA⊗f−−−−→ A⊗ C idA⊗g−−−−→ A⊗D → 0

is also exact. There are three things to check:

1. im(idA ⊗ f) ⊆ ker(idA ⊗ g).

2. ker(idA ⊗ g) ⊆ im(idA ⊗ f).

3. idA ⊗ g is surjective.

The proof of (1) is easy:

(idA ⊗ g) ◦ (idA ⊗ f) = (idA ⊗ gf) = (idA ⊗ 0) = 0,

where we used the second statement of Proposition 24.5 and the fact that A ⊗ � is
additive.
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The proof of (2) is rather trickier. For this, let us denote by E := im(idA ⊗ f).
Then the map idA⊗ g : A⊗C → A⊗D induces a map h : (A⊗C)/E → A⊗D given
by

a⊗ c+ E 7→ a⊗ gc

(this is well defined by part (1)). By definition, one has idA ⊗ g = h ◦ p, where
p : A⊗C → (A⊗C)/E is the quotient map. We will prove that h is an isomorphism.
Then

im(idA ⊗ f) = E = ker p = ker(h ◦ p) = ker(idA ⊗ g).

We will use the universal property of the tensor product to find an inverse to h.
Given d ∈ D, since g is surjective there exists c ∈ C such that gc = d. If c′ is another
such element of C such that gc′ = d then c− c′ ∈ ker g = im f , and thus there exists
b ∈ B such that fb = c− c′. Thus for any a ∈ A,

a⊗ c− a⊗ c′ = a⊗ (c− c′) = (idA ⊗ f)(a⊗ b) ∈ im(idA ⊗ f) = E.

This means that there is a well defined map ϕ : A×D → (A⊗ C)/E given by

ϕ(a, d) = a⊗ c+ E,

where c is any element of C such that gc = d. The function ϕ is obviously bilinear, and
hence by the universal property there exists a homomorphism j : A⊗D → (A⊗C)/E
such that j(a ⊗ d) = a ⊗ c + E (where as before, c is any element of C such that
gc = d.) Then by definition, j ◦ h = id(A⊗C)/E and h ◦ j = idA⊗D. This proves (2).

Finally, if
∑
ai ⊗ di is an element of A ⊗D, since g is surjective we can choose

ci ∈ C such that gci = di. Then

(idA ⊗ g)
(∑

ai ⊗ ci
)

=
∑

ai ⊗ di,

which proves (3).

Now let us define free resolutions.

Definition 24.11. Suppose A is an abelian group. A free resolution of A is an
exact sequence of the form

· · · → F2
f2−→ F1

f1−→ F0
f0−→ A→ 0,

where each Fi is a free abelian group. A short free resolution2 of A is a free
resolution where each Fi for i ≥ 2 is the zero group, that is, a sequence of the form

0→ K → F → A→ 0

where K and F are both free.

Let us show that short resolutions always exist.

2This terminology is non-standard.
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Proposition 24.12. Let A be an abelian group. Then there exists a short free
resolution of A.

Proof. Let F be the free abelian group with basis the elements of A. There is a
surjective homomorphism F → A obtained by extending by linearity (Lemma 7.2)
the map that sends each basis element to itself. Let K denote the kernel of this map.
Then K is a subgroup of a free abelian group, and hence is also a free abelian group3,
and by construction, 0→ K → F → A→ 0 is exact.

We now define the Tor functor.

Definition 24.13. Let A be an abelian group. Let 0 → K
f−→ F → A → 0 be a

short free resolution of A. Given any other abelian group B, we define

Tor(A,B) := ker(f ⊗ idB).

Thus Tor(A,B) measures the failure of � ⊗ B to be left exact on the sequence
0→ K → F → A→ 0.

You should all immediately be asking: is this well defined? That is, does the value
of Tor(A,B) depend on the choice of short free resolution? The answer (luckily!) is
no. We will prove this next lecture using the Comparison Theorem (Proposition
22.7) from last semester.

3This is a non-trivial fact!
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LECTURE 25

The Universal Coefficients Theorem

This lecture we’ll begin by showing how to make Tor into a functor. This requires a
few preliminaries.

Definition 25.1. Suppose (C•, ∂) is a chain complex and A is an abelian group.
Let us denote by C• ⊗ A the chain complex whose nth group is Cn ⊗ A, and whose
boundary operator is ∂ ⊗ idA. The fact that this is a chain complex (i.e. that
(∂ ⊗ idA) ◦ (∂ ⊗ idA) = 0) follows from additivity of � ⊗ A (part (2) of Proposition
24.8). In this way we can view �⊗A also as a functor Comp→ Comp.

Lemma 25.2. Let (C•, ∂) and (C ′•, ∂
′) be two chain complexes, and let A be an abelian

group.

1. Suppose f : C• → C ′• is a chain map. Let A be an abelian group. Then
f ⊗ idA : C• ⊗A→ C ′• ⊗A is also a chain map.

2. Suppose f : C• → C ′• and g : C• → C ′• are two chain maps which are chain
homotopic. Then the chain maps f ⊗ idA and g⊗ idA are also chain homotopic.

Proof. For the first statement, note that

(f ⊗ idA) ◦ (∂ ⊗ idA) = (f ◦ ∂)⊗ idA = (∂′ ◦ f)⊗ idA = (∂′ ⊗ idA) ◦ (f ⊗ idA).

For the second, if P is a chain homotopy from f to g, that is, ∂′P +P∂ = f −g, then

(∂′ ⊗ idA) ◦ (P ⊗ idA) + (P ⊗ idA) ◦ (∂ ⊗ idA) = ∂′P ⊗ idA + P∂ ⊗ idA

= (∂′P + P∂)⊗ idA

= (f − g)⊗ idA

= f ⊗ idA − g ⊗ idA,

so that P ⊗ idA is a chain homotopy between f ⊗ idA and g ⊗ idA.

Now let us rephrase the definition of Tor in rather fancier language. Suppose

0 → K
f−→ F → A → 0 is a short free resolution. Let us define a (rather stupid)

chain complex (C•, ∂) by setting:

Cn :=


F, n = 0,

K, n = 1,

0, n 6= 0, 1.

(25.1)

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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and defining the boundary map ∂ : C1 → C0 to be f : K → F . Then this chain
complex has the property that

H0(C•) = F/ im f ∼= A.

Note this chain complex is both free and acyclic in positive degrees. Now let us tensor
this chain complex with B, forming a new complex (C• ⊗B, ∂ ⊗ idB) (this complex
is not free if B is not free.) This new complex has the property that

H1(C• ⊗B) = ker(∂ ⊗ idB : C1 ⊗B → C0 ⊗B) = ker(f ⊗ idB) = Tor(A,B).

Fix an abelian group B. We will show that Tor(�, B) : Ab → Ab is a functor.
We have already defined Tor(�, B) on objects (i.e. abelian groups), so it remains to
explain what it does to morphisms. Thus suppose h : A → A′ is a homomorphism.
We wish to define a homomorphism

Tor(h,B) : Tor(A,B)→ Tor(A′, B).

Let 0 → K → F → A → 0 and 0 → K ′ → F ′ → A′ → 0 be two short free
resolutions of A and A′ respectively, and denote by C• and C ′• the corresponding
chain complexes, as described in (25.1), so that

H0(C•) = A, H0(C ′•) = A′.

We can therefore think of h : A → A′ as a map H0(C•) → H0(C ′•). Now we invoke
Theorem 22.7, which tells us there exists a chain map g : C• → C ′• with H0(g) = h.

Tensoring with B, we get a chain map g ⊗ idB : : C• ⊗ B → C ′• ⊗ B by the first
part of Lemma 25.2. Now pass to the first homology group to get a map

H1(g ⊗ idB) : H1(C• ⊗B)→ H1(C ′• ⊗B).

Since H1(C•⊗B) = Tor(A,B) and H1(C ′•⊗B) = Tor(A′, B), we can think of this a
map

Tor(h,B) := H1(g ⊗ idB) : Tor(A,B)→ Tor(A′, B).

We still haven’t addressed the question as to why Tor is well defined (i.e. that it
doesn’t depend on the choice of short free resolution.) This is proved in the same way
as the argument above: we start with two short free resolutions 0→ K → F → A→ 0
and 0 → K ′ → F ′ → A → 0 of the same group A. Denote as before the two chain
complexes by C• and C ′•. Now take h to be the identity.

Invoking Theorem 22.7 again, we obtain a chain map g : C• → C ′• with H0(g) =
idA. Moreover, by Corollary 22.9, this chain map g is a chain equivalence. By the
second part of Lemma 25.2, the tensored map g ⊗ idB is also a chain equivalence.
Thus in particular H1(g ⊗ idA) is an isomorphism, which implies that

H1(C• ⊗B) ∼= H1(C ′• ⊗B).

Thus Tor(A,B) is indeed independent of the choice of short free resolution.
We have therefore proved:
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Proposition 25.3. For each fixed abelian group B, Tor(�, B) : Ab→ Ab is a functor.

Remark 25.4. In a similar vein, we can also fix the first variable of Tor: if A is
any abelian group then Tor(A,�) : Ab→ Ab is a functor, and the value of Tor(A,�)
on B is isomorphic to the value of Tor(�, B) on A (this is not so easy to prove
though!) I will leave if to you as an exercise to guess how to define the induced map
Tor(A, h) : Tor(A,B)→ Tor(A,B′) for a given homomorphism h : B → B′.

The next result is on Problem Sheet L.

Lemma 25.5. Suppose B is a torsion-free abelian group. Then �⊗B and B⊗� are
exact functors.

The following theorem summarises the main properties of Tor.

Theorem 25.6 (Properties of Tor).

1. If either A or B are torsion-free abelian groups then Tor(A,B) = 0.

2. If1 T (A) denotes the torsion subgroup of A then for any abelian group B one
has Tor(A,B) = Tor(T (A), B).

3. If 0 → B → B′ → B′′ → 0 is a short exact sequence, then there is an exact
sequence

0→ Tor(A,B)→ Tor(A,B′)→ Tor(A,B′′)→ A⊗B → A⊗B′ → A⊗B′′ → 0.
(25.2)

Similarly if 0→ A→ A′ → A′′ → 0 is a short exact sequence, then there is an
exact sequence

0→ Tor(A,B)→ Tor(A′, B)→ Tor(A′′, B)→ A⊗B → A′⊗B → A′′⊗B → 0.
(25.3)

4. For any two abelian groups A,B, Tor(A,B) ∼= Tor(B,A).

5. If B is an abelian group and {Aλ | λ ∈ Λ} is a (possibly uncountable) family of
abelian groups then there is an isomorphism

Tor
(⊕
λ∈Λ

Aλ, B
)
∼=
⊕
λ∈Λ

Tor(Aλ, B).

and similarly

Tor
(
B,
⊕
λ∈Λ

Aλ

)
∼=
⊕
λ∈Λ

Tor(B,Aλ).

6. For any m ∈ N and any abelian group B,

Tor(Zm, B) ∼= {b ∈ B | mb = 0}.

1This is the reason for the name “Tor”.
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Proof. If A is free then we can choose a silly short free resolution: 0 → 0 → A →
A→ 0. Then clearly Tor(A,B) = 0 for any abelian group B. If B is torsion-free then
by Lemma 25.5, for any short free resolution 0 → K → F → A of A, the sequence
0→ K ⊗B → F ⊗B → A⊗B → 0 is exact, so that Tor(A,B) = 0 in this case too.
This proves part (1) in the case where A is free and the case where B is torsion-free.
We have not yet done the case where A is merely torsion-free; we will do this after
proving part (4).

Let us skip part (2) for now and prove the first statement of part (3). Suppose
0 → B → B′ → B′′ → 0 is exact. Let 0 → K → F → A → 0 be a short
free resolution of A. Let C• denote the chain complex as defined in (25.1), so that
Tor(A,B) = H1(C• ⊗ B) and similarly for the other two. Then since K and F are
free, by Lemma 25.5 again, the following diagram has exact rows:

0 K ⊗B K ⊗B′ K ⊗B′′ 0

0 F ⊗B F ⊗B′ F ⊗B′′ 0

This means that
0→ C• ⊗B → C• ⊗B′ → C• ⊗B′′ → 0

is a short exact sequence of chain complexes. The desired sequence (25.2) is then
simply the last six terms of the long exact sequence in homology (Theorem 11.5)
associated to this short exact sequence. This proves the first statement of part (3).
We will prove the second statement of part (3) after we have proved part (4).

Suppose 0 → K → F → A → 0 is a short free resolution of A. Then for any
abelian group B, since K and F are free, from part (1) we know that Tor(B,K) =
Tor(B,F ) = 0. We then apply (25.2) to the exact sequence 0 → K → F → A → 0
to obtain an exact sequence

0→ 0→ 0→ Tor(B,A)→ B ⊗K → B ⊗ F → B ⊗A→ 0.

By definition of Tor(A,B), the bottom row of the next diagram is exact:

0 0 Tor(B,A) B ⊗K B ⊗ F B ⊗A 0

0 0 Tor(A,B) K ⊗B F ⊗B A⊗B 0

∼= ∼= ∼=

The vertical arrows are isomorphisms by natural commutativity of the tensor product
(part (1) of Proposition 24.8). Since the squares commute and the two rows are exact
there is a map Tor(B,A)→ Tor(A,B), which then by the Five Lemma (Proposition
11.3) is an isomorphism. This proves part (4).

Now we can go back and finish the proof of part (1): if A is torsion-free then for
any abelian group B, using part (4) we have Tor(A,B) = Tor(B,A) = 0, since we
have already shown that Tor(�, A) vanishes on torsion-free groups.

We can also now prove part (2). Note that for any abelian group A, if T (A)
denotes the torsion subgroup then A/T (A) is torsion-free. Thus by part (1) (which we
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have now completely proved) we have Tor(A/T (A), B) = 0 for any abelian group B.
We now apply part (3) to the short exact sequence 0→ T (A)→ A→ A/T (A)→ 0.
The first three terms of (25.2) become

0→ Tor(T (A), B)→ Tor(A,B)→ 0.

This proves part (2). The second sequence (25.3) in part (3) also easily follows from
(25.2), given part (4).

The proof of part (5) is easy: if 0→ Kλ → Fλ → Aλ → 0 is a short free resolution
of Aλ then

0→
⊕
λ∈Λ

Kλ →
⊕
λ∈Λ

Fλ →
⊕
λ∈Λ

Aλ → 0

is a short free resolution of
⊕

λ∈ΛAλ. This proves the first statement of part (5),
and the second statement then follows by applying part (4).

Finally, the proof of part (6) is also easy. For this we use the short free resolution
0→ Z m−→ Z→ Zm → 0 of Zm. The desired result then follows by applying part (3)
of Proposition 24.8. This finally finishes the proof of the theorem.

Remark 25.7. Theorem 25.6 allows one to compute the value of Tor in some easy
situations. For instance, Tor(Zm,Zn) ∼= Zd, where d is the greatest common divisor
of m and n.

Finally some topology:

Definition 25.8. Let X be a topological spaces and let A be an abelian group. Let
C•(X) denote the singular chain complex, and set C•(X;A) := C•(X)⊗ A. Thus a
typical n-chain in Cn(X;A) has the form

∑
ai ⊗ σi, where ai ∈ A and σi : ∆n → X

is a singular n-simplex in X. We define the nth singular homology of X with
coefficients in A to be the group

Hn(X;A) := Hn(C•(X;A)).

In the same way, if X ′ ⊆ X is a subspace we define the chain complex2 C•(X,X
′;A)

and the relative homology with coefficients in A.

It follows from part (4) of Proposition 24.8 that taking A = Z recovers the normal
singular homology groups:

Hn(X,X ′;Z) = Hn(X,X ′).

Remark 25.9. Let A be an abelian group. We define a homology theory (H•, δ)
with coefficients in A in exactly the same way as we defined a (normal) homology
theory in Definition 21.9, apart from the dimension axiom is replaced by:

• If {∗} is a one-point space then Hn(∗) = 0 for all n > 0 and H0(∗) = A.

Singular homology with coefficients in A is then an example of a homology theory
with coefficients in A.

2Pay attention to the difference between the comma and the semi-colon in Hn(X,X ′;A)!
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We will see shortly why homology with coefficients is useful. For instance, taking
A = Z2 is often particularly pleasant, as this allows one to ignore all ± signs that
crop up in formulae. On Problem Sheet L you will see that taking Z2 coefficients
gives one an easier way to prove Theorem 15.12, that an odd map has an odd degree.

Another useful choice is A = R; this gives homology with real coefficients. This
theory is particularly useful in differential geometry (when X is a manifold). Since
R is torsion-free, we will see shortly that one always has

Hn(X;R) = Hn(X)⊗ R.

Here is the main theorem of today’s lecture:

Theorem 25.10 (The Universal Coefficients Theorem). Let X be a topological space
and let A be an abelian group. Then for every n ≥ 0 there is an exact sequence

0→ Hn(X)⊗A ω−→ Hn(X;A)→ Tor(Hn−1(X), A)→ 0, (25.4)

where ω is the map 〈c〉 ⊗ a 7→ 〈c⊗ a〉. Moreover this sequence splits, and hence

Hn(X;A) ∼= Hn(X)⊗A⊕ Tor(Hn−1(X), A). (25.5)

Remark 25.11. The splitting of the sequence (25.4) is not natural, and hence the
isomorphism (25.5) is also not natural (cf. Remark 12.17.)

In fact we will prove a more general statement:

Theorem 25.12 (The Universal Coefficients Theorem II). Let (C•, ∂) denote a free
chain complex and let A denote an abelian group. Then for every n ≥ 0, there is an
exact sequence

0→ Hn(C•)⊗A
ω−→ Hn(C• ⊗A)→ Tor(Hn−1(C•), A)→ 0,

where ω is the map 〈c〉 ⊗ a 7→ 〈c⊗ a〉. Moreover this sequence splits, and hence

Hn(C• ⊗A) ∼= Hn(C•)⊗A⊕ Tor(Hn−1(C•), A).

We will need the following lemma, whose proof is again on Problem Sheet L. It
tells us that split exact sequences are always preserved by additive functors.

Lemma 25.13. If T : Ab → Ab is an additive functor and 0 → A → B → C → 0 is
any split exact sequence, then 0 → T (A) → T (B) → T (C) → 0 is also a split exact
sequence.

Proof of Theorem 25.12. The proof is even more tedious and long-winded than the
proof of Theorem 25.6, and we will break the proof up into four steps.

1. Let Bn ⊆ Zn ⊆ Cn denote the boundaries and cycles respectively. Let us also
denote by i : Zn ↪→ Cn the inclusion. Then we have an exact sequence

0→ Zn
i−→ Cn

∂−→ Bn−1 → 0 (25.6)
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Since Bn−1 is a subgroup of the free abelian group Cn−1, Bn−1 is itself free, and hence
by part (3) of Problem F.6, the exact sequence (25.6) splits. To keep the notation
simple, for the rest of the proof we write id for idA. Now tensor with A to obtain
another split exact sequence

0→ Zn ⊗A
i⊗id−−−→ Cn ⊗A

∂⊗id−−−→ Bn−1 ⊗A→ 0, (25.7)

where we are using Lemma 25.13. Next, we can view Z• as a subcomplex of C• where
all the boundary operators are zero. Define a chain complex B+

• to be the chain
complex whose nth group B+

n := Bn−1 and again with all the boundary operators
zero. We can then think of ∂ as defining a chain map C• → B+

• . Thus we can assemble
the short exact sequences (25.7) into a short exact sequence of chain complexes:

0→ Z• ⊗A
i⊗id−−−→ C• ⊗A

∂⊗id−−−→ B+
• ⊗A→ 0.

2. Now consider the long exact sequence in homology associated to this short exact
sequence. Since Z• and B+

• have zero boundary operators, we have

Hn(Z• ⊗A) = Zn ⊗A, Hn(B+
• ⊗A) = Bn−1 ⊗A,

and hence if δ is the connecting homomorphism of the long exact sequence, we can
write it as:

. . . Bn ⊗A
δ−→ Zn ⊗A→ Hn(C• ⊗A)→ Bn−1 ⊗A

δ−→ Zn−1 ⊗A→ . . .

Thus for every n there is an exact sequence

0→ Zn ⊗A/ im δ
ω−→ Hn(C• ⊗A)→ ker δ → 0, (25.8)

where ω is the map induced by Hn(i⊗ id):

ω : z ⊗ a+ im δ 7→ Hn(i⊗ id)(z ⊗ a) = 〈z ⊗ a〉

(recall i is just an inclusion.) Let us identify the connecting homomorphism δ. From
Theorem 11.5, we have for a generator b⊗ a ∈ Bn−1 ⊗A that

δ(b⊗ a) = (i⊗ id)−1(∂ ⊗ id)(∂ ⊗ id)−1(b⊗ a),

which is just b ⊗ a again, only now regarded as an element of Zn−1 ⊗ A. Thus if
j : B• ↪→ Z• is the inclusion, then δ = j ⊗ id. This means we can rewrite (25.8) as

0→ (Zn ⊗A)/ im(j ⊗ id)
ω−→ Hn(C• ⊗A)→ ker(j ⊗ id)→ 0. (25.9)

3. The definition of homology gives exact sequences

0→ Bn−1
j−→ Zn−1 → Hn−1(C•)→ 0.

In fact, this is a short free resolution, since (as we have already observed), both Bn−1

and Zn−1 are free. Thus Tor(Hn−1(C•), A) = ker(j ⊗ id). Next, apply (25.3) to this
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short exact sequence, and use the fact that Tor(Zn−1, A) = 0 as Zn−1 is free to obtain
exact sequences

0→ Tor(Hn−1(C•), A)→ Bn−1 ⊗A
j⊗id−−−→ Zn−1 ⊗A→ Hn−1(C•)⊗A→ 0.

This tells us that (replacing n− 1 with n) that

(Zn ⊗A)/ im(j ⊗ id) = coker(j ⊗ id) = Hn(C•)⊗A.

Thus we can rewrite (25.9) as

0→ Hn(C•)⊗A
ω−→ Hn(C• ⊗A)→ Tor(Hn−1(C•), A)→ 0, (25.10)

which is what we were trying to prove.
4. It remains to show that (25.10) splits. For this, let r : Cn → Zn denote a

splitting of (25.6) (such an r exists by part (1) of Problem F.6). Then the composition

ker(∂ ⊗ id) ⊆ C• ⊗A
r⊗id−−−→ Zn ⊗A→ Hn(C•)⊗A

maps im(∂⊗ id) to zero and hence induces a map ρ : Hn(C•⊗A)→ Hn(C•)⊗A with
ρ ◦ ω the identity on Hn(C•)⊗A. This finally completes the proof.
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LECTURE 26

The Algebraic Künneth Theorem

In the next two lectures we will show how to compute the homology of a product
X × Y in terms of the homology of X and the homology of Y . The answer is not
as simple as one might naively guess (it involves Tor terms!). This lecture we prove
a purely algebraic statement about the homology of the tensor product of two free
chain complexes; next lecture we will apply this to the singular chain complex.

We first generalise Definition 25.1 and tensor two entire chain complexes together
(rather than just a chain complex and a single group).

Definition 26.1. Let (C•, ∂) and (C ′•, ∂
′) be two non-negative chain complexes. The

tensor product chain complex (C• ⊗C ′•,∆) is the chain complex whose nth group
is

(C• ⊗ C ′•)n :=
⊕
i+j=n

Ci ⊗ C ′j ,

and the boundary operator ∆ is defined by

∆(ci ⊗ c′j) := ∂ci ⊗ c′j + (−1)ici ⊗ ∂′c′j , ci ∈ Ci, cj ∈ C ′j .

Note C• ⊗ C ′• is also non-negative.

The (−1)i in the second term is included to ensure that ∆ ◦ ∆ = 0. Indeed, if
ci ∈ Ci and cj ∈ C ′j , then since ∂ci ∈ Ci−1 we have

∆ ◦∆(ci ⊗ cj) = ∆
(
∂ci ⊗ c′j + (−1)ici ⊗ ∂′c′j

)
= ∂2ci ⊗ c′j + (−1)i−1∂ci ⊗ ∂′c′j + (−1)i∂ci ⊗ ∂′c′j + (−1)2ici ⊗ (∂′)2c′j

= 0 + (−1)i
(
∂ci ⊗ ∂′c′j − ∂ci ⊗ ∂′c′j

)
= 0.

Definition 26.2. Let C•, C
′
•, D•, D

′
• be four non-negative chain complexes. Let

f : C• → D• and g : C ′• → D′• be two chain maps. We define a chain map

f ⊗ g : C• ⊗ C ′• → D• ⊗D′•

given by

(f ⊗ g)n =
∑
i+j=n

fi ⊗ gj .

The verification that this is indeed a chain map is trivial, and I will leave it to
you. The following result is slightly trickier, and is on Problem Sheet M.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.

1

https://www.merry.io


Lemma 26.3. Let C•, C
′
•, D•, D

′
• be four non-negative chain complexes. Assume we

are given four chain maps

f, f ′ : C• → D•, g, g′ : C ′• → D′•,

and assume that f and f ′ are chain homotopic and g and g′ are chain homotopic.
Then f ⊗ g is chain homotopic to f ′ ⊗ g′.

An immediate corollary is then:

Corollary 26.4. Let C•, C
′
•, D•, D

′
• be four non-negative chain complexes. If C•

is chain equivalent to C ′• and D• is chain equivalent to D′• then C• ⊗ D• is chain
equivalent to C ′• ⊗D′•.

We now aim to prove the Algebraic Künneth Theorem, which tells us how to
compute the homology of a tensor product complex C• ⊗ D• under the additional
assumption that both C• and D• are free. The reason for the “algebraic” is that
next lecture we will prove a “topological” version of the same result.

Theorem 26.5 (The Algebraic Künneth Theorem). Let (C•, ∂) and (D•, ∂
′) be two

non-negative free chain complexes. Then for every n ≥ 0, there is an exact sequence

0→
⊕
i+j=n

Hi(C•)⊗Hj(D•)
ω−→ Hn(C• ⊗D•)→

⊕
k+l=n−1

Tor
(
Hk(C•), Hl(D•)

)
→ 0,

where ω is the map 〈ci〉 ⊗ 〈dj〉 7→ 〈ci ⊗ dj〉. Moreover this sequence splits, and hence

Hn(C• ⊗D•) ∼=

 ⊕
i+j=n

Hi(C•)⊗Hj(D•)

⊕( ⊕
k+l=n−1

Tor
(
Hk(C•), Hl(D•)

))
.

The proof of Theorem 26.5 requires two preliminary results.

Proposition 26.6. Let E• be a non-negative chain complex where every boundary
operator is the zero map. Let (D•, ∂) be any non-negative chain complex. For i ≥ 0,
let Di

• denote the chain complex whose nth group is Di
n := Dn−i and with boundary

operator ∂ : Di
n → Di

n−1 equal to ∂ : Dn−i → Dn−i−1. Then

Hn(E• ⊗D•) ∼=
⊕
i≥0

Hn(Ei ⊗Di
•)

(here the chain complex Ei ⊗ Di
• is just the chain complex Di

• tensored with the
abelian group Ei, as in Definition 25.1.)

Proof. Since E• has zero boundary operators, the boundary operator ∆ of E• ⊗D•
is given in degree n by

∆(ei ⊗ dn−i) = (−1)iei ⊗ ∂dn−i = (−1)i(idEi ⊗ ∂)(ei ⊗ dn−i),
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where ei ∈ Ei, dn−i ∈ Dn−i. Thus

Hn(E• ⊗D•) =
⊕
i≥0

ker(idEi ⊗ ∂|Dn−i)
im(idEi ⊗ ∂|Dn+1−i)

=
⊕
i≥0

Hn(Ei ⊗Di
•).

Lemma 26.7. Let 0→ C•
f−→ C ′•

g−→ C ′′• → 0 be a short exact sequence of non-negative
chain complexes. Let D• be a non-negative free chain complex. Then

0→ C• ⊗D•
f⊗id−−−→ C ′• ⊗D•

g⊗id−−−→ C ′′• ⊗D• → 0

is another short exact sequence of chain complexes.

The proof of Lemma 26.7 is relegated to Problem Sheet M.

Proof of the Künneth Theorem 26.5. The proof is broken into three steps. The third
step uses the Universal Coefficients Theorem 25.12.

1. Let H• denote the chain complex whose nth group is Hn = Hn(C•), and with
all its boundary operators zero. In this first step, we will set up notation and then
define a homomorphism ϕ : Hn(C•⊗D•)→ Hn(H•⊗D•). In the second step we will
prove that ϕ is an isomorphism. This allows us to reduce the problem of computing
Hn(C• ⊗D•) to that of Hn(H• ⊗D•), and for this Proposition 26.6 is applicable.

We will use the same notation as in the proof of the Universal Coefficients Theo-
rem 25.12: let Bn ⊆ Zn ⊆ Cn denote the boundaries and cycles of Cn, and let B+

• and
Z• denote the chain complexes with groups B+

n = Bn−1 and Zn respectively, both
with zero boundary operators. Let i : Zn → Cn and j : Bn → Zn denote inclusions,
and finally let p : Zn → Hn denote the projection c 7→ 〈c〉. Thus we have two short
exact sequences of chain complexes:

0→ Z•
i−→ C•

∂−→ B+
• → 0

and
0→ B•

j−→ Z•
p−→ H• → 0,

where in the first sequence we think of the boundary operator ∂ as a chain map
C• → B+

• . Since each term of D• is free abelian, by Lemma 26.7, these sequences
remain exact when we tensor with D•:

0→ Z• ⊗D•
i⊗id−−−→ C• ⊗D•

∂⊗id−−−→ B+
• ⊗D• → 0 (26.1)

and
0→ B• ⊗D•

j⊗id−−−→ Z• ⊗D•
p⊗id−−−→ H• ⊗D• → 0 (26.2)

Now let r : Cn → Zn denote a splitting of 0 → Zn → Cn → Bn−1 → 0 (such an r
exists as Bn−1 is free abelian, as discussed at the end of the proof of Theorem 25.12
last lecture.) Define µ : C• → H• by µ = p ◦ r, that is,

µc = 〈rc〉.
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We claim that µ : C• → H• is a chain map. Indeed, if c ∈ Cn+1 then µ ◦ ∂c =
〈r∂c〉 = 〈∂c〉 = 0, since ∂c ∈ Bn ⊆ Zn and r|Zn = idZn . Since H• has zero boundary
operators, this shows that µ is indeed a chain map.

We then define

ϕ : Hn(C• ⊗D•)→ Hn(H• ⊗D•), ϕ := Hn(µ⊗ id).

2. In the second step, we will show that ϕ is an isomorphism. For this we take the
long exact sequences in homology associated to the short exact sequences of chain
complexes (26.1) and (26.2), and then “stick them together” as follows:

Hn+1(B+
• ⊗D•) Hn(Z• ⊗D•) Hn(C• ⊗D•) Hn(B+

• ⊗D•) Hn−1(Z• ⊗D•)

Hn(B• ⊗D•) Hn(Z• ⊗D•) Hn(H• ⊗D•) Hn−1(B• ⊗D•) Hn−1(Z• ⊗D•)

δ

ϕ

δ

δ′

Here δ and δ′ are the two connecting homomorphisms. The vertical maps are all
isomorphisms: the second and fifth are just the identity maps, and the first and
fourth come from the fact that by definition of B+

• , one has

Hn+1(B+
• ⊗D•) ∼= Hn(B• ⊗D•).

You can probably all now guess how we’re going to prove that ϕ is an isomorphism
(the Five Lemma). The only problem is in the “stick them together” above: one
cannot just bung two exact sequences together and hope that the resulting diagram
commutes! So we need to check this by hand.

In the following we denote by ∆ the boundary operators in all the tensored
complexes. Let us show the last square commutes. Let b+i ⊗ dn−i ∈ B

+
i ⊗Dn−i be

a non-zero cycle in B+
i ⊗ Dn−i = Bi−1 ⊗ Dn−i. Then since B+

• has zero boundary
operators, we have

0 = ∆(b+i ⊗ dn−i) = (−1)ib+i ⊗ ∂
′dn−i.

Since B+
i ⊗ Dn−i−1 is free abelian by Problem L.2, it follows that ∂′dn−i = 0, and

hence dn−i is a cycle in Dn−i. Now choose ci ∈ Ci such that ∂ci = b+i . By definition
of the connecting homomorphism δ, we have

δ〈b+i ⊗ dn−i〉 = 〈∆(ci ⊗ dn−i)〉.

However

∆(ci ⊗ dn−i) = ∂ci ⊗ dn−i + (−1)ici ⊗ ∂′dn−i = b+i ⊗ dn−i,

since ∂′dn−i = 0. This shows that the last square commutes on a set of generators
for Hn(B+

• ⊗D•). Exactly the same argument (with n replaced by n+ 1) shows the
first square commutes, and the proof of the second square is similarly routine.

The third square is a little trickier. If ci ⊗ dn−i is a cycle in Ci ⊗Dn−i then

∆(ci ⊗ dn−i) = ∂ci ⊗ dn−i + (−1)ici ⊗ ∂′dn−i = 0.
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Applying r ⊗ id to this equation we obtain:

∂ci ⊗ dn−i = −(−1)irci ⊗ ∂′dn−i, (26.3)

since r(∂ci) = ∂ci. The connecting homomorphism δ′ is given by (j⊗ id)−1 ◦∆◦ (p⊗
id)−1 (cf. (11.3)). Thus going anti-clockwise round the third square sends 〈ci⊗dn−i〉
to (−1)i〈rci ⊗ ∂′dn−i〉. Meanwhile going clockwise sends 〈ci ⊗ dn−i〉 to 〈∂ci ⊗ dn−i〉.
Thus (26.3) tells us that the third square does not commute, but it does however
commute up to a sign.

Luckily, as I invite you to check, the proof of the Five Lemma (Proposition 11.3)
goes through without change if one only assumes that the squares commute up to a
sign, and so we can still conclude that ϕ is an isomorphism.

3. We now complete the proof. Using what we just proved together with Propo-
sition 26.6, we see that

Hn(C• ⊗D•) ∼= Hn(H• ⊗D•) ∼=
⊕
i≥0

Hn(Hi(C•)⊗Di
•), (26.4)

since H• has zero boundary operators. By the Universal Coefficients Theorem 25.12,
there are split exact sequences for all n and i:

0→ Hi(C•)⊗Hn(Di
•)

ω−→ Hn(Hi(C•)⊗Di
•)→ Tor

(
Hi(C•), Hn−1(Di

•)
)
→ 0,

which we can rewrite as

0→ Hi(C•)⊗Hn−i(D•)
ω−→ Hn(Hi(C•)⊗Di

•)→ Tor
(
Hi(C•), Hn−i−1(D•)

)
→ 0,

Now take the direct sum of this last sentence over all i ≥ 0 and use the fact that the
first term vanishes for i > n and the last term term vanishes for i > n− 1 to obtain
a split exact sequence

0→
⊕
i+j=n

Hi(C•)⊗Hj(D•)
ω−→
⊕
q≥0

Hn(Hq(C•)⊗Dq
•)→

⊕
k+l=n−1

Tor
(
Hk(C•), Hl(D•)

)
→ 0.

Finally, combining this with (26.4) completes the proof.
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LECTURE 27

The Eilenberg-Zilber Theorem

In this lecture we state and prove the Eilenberg-Zilber Theorem which allows us to
apply the Algebraic Künneth Theorem 26.5 from last lecture to the singular homology
of a product of two spaces.

We begin however with a digression about chain equivalences1 that we will need in
the course of the proof of the Eilenberg-Zilber Theorem. Our first result is a partial
converse to Corollary 10.26.

Proposition 27.1. Let (C•, ∂) be a free chain complex. Then (C•, ∂) is acyclic if
and only if it has a contracting chain homotopy.

Proof. Sufficiency was proved in Corollary 10.26. For the converse, assume that
Hn(C•) = 0 for all n. Since Bn = Zn, we have the following short exact sequence for
every n:

0→ Zn
in−→ Cn

∂−→ Zn−1 → 0

Since Zn−1 is free abelian, this sequence splits, so let r : Zn−1 → Cn be such that
∂ ◦ rn = id. Observe that idCn − rn−1∂ has image in Zn. Indeed, if c ∈ Cn then

∂(c− ∂rn−1c) = ∂c− ∂rn−1∂c = ∂c− ∂c = 0.

Now define
Qn : Cn → Cn+1, Qn = rn(id− rn−1∂).

Then

∂Qn +Qn−1∂ = ∂rn(id− rn−1∂) + rn−1(id− rn−2∂)∂

= id− rn−1∂ + rn−1∂ − 0

= id.

Definition 27.2. Let f : (C•, ∂)→ (D•, ∂
′) be a chain map. Given n ∈ Z, define an

abelian group
Conen(f) := Cn−1 ⊕Dn.

Define a map ∂f : Conen(f)→ Conen−1(f) by

∂f (c, d) = (−∂c, fc+ ∂′d).

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
1This material originally appeared as Question 6 in the Algebraic Topology I Exam in January 2018!

I am including this again here for those of you that either (a) did not take the exam, (b) took the exam
but got it wrong, or (c) took the exam, got it right, but then forgot everything thirty seconds after the
exam and have absolutely no recollection of it anymore...
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In matrix form,

∂f =

(
−∂ 0
f ∂′

)
.

From this it is clear that ∂f ◦ ∂f = 0, since

∂f ◦ ∂f =

(
−∂ 0
f ∂′

)(
−∂ 0
f ∂′

)
=

(
−∂2 0

−f∂ + ∂′f (∂′)2

)
=

(
0 0
0 0

)
.

We call this the mapping cone of f .

Observe that if both (C•, ∂) and (D•, ∂
′) are free chain complexes then so is(

Cone•(f), ∂f
)
.

Here is an easy result about mapping cones.

Proposition 27.3. Let f : (C•, ∂)→ (D•, ∂
′) be a chain map between two free chain

complexes. Assume that
(
Cone•(f), ∂f

)
is acyclic. Then f is a chain equivalence.

Proof. Since
(
Cone•(f), ∂f

)
is free and acyclic, by Proposition 27.1 it has a contract-

ing homotopy Q. Let us suggestively write Q in the form:

Q =

(
p g
r −p′

)
,

so that (
−∂ 0
f ∂′

)(
p g
r −p′

)
+

(
p g
r −p′

)(
−∂ 0
f ∂′

)
=

(
id 0
0 id

)
This gives us four equations:(

−∂p− p∂ + gf −∂g + g∂′

mess fg − ∂′p′ − p′∂′
)

=

(
id 0
0 id

)
Then g : D• → C• satisfies −∂g + g∂′ = 0 and hence is a chain map. Moreover we
obtain p∂ + ∂p = gf − id and p′∂′ + ∂′p′ = fg − id, which shows that f is a chain
equivalence.

Our next result fits the mapping cone into a long exact sequence.

Proposition 27.4. Let f : (C•, ∂) → (D•, ∂
′) be a chain map. Then there is an

exact sequence

· · · → Hn+1

(
Cone•(f)

)
→ Hn(C•)

Hn(f)−−−−→ Hn(D•)→ Hn

(
Cone•(f)

)
→ . . .

Proof. Let C+
• denote the same chain complex as C• but the groups shifted by one:

C+
n := Cn−1 and the boundary operator ∂+ := −∂. Then there is a short exact

sequence of chain complexes

0→ D•
i−→ Cone•(f)

p−→ C+
• → 0,
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where i : d 7→ (0, d) and p : (c, d) 7→ c. This gives us a long exact sequence in homol-
ogy:

. . . Hn+1

(
Cone•(f)

)
→ Hn+1(C+

• )
δ−→ Hn(D•)→ Hn

(
Cone•(f)

)
→ . . .

It is clear that Hn+1(C+
• ) = Hn(C•), and it remains to see that under this identi-

fication the connecting homomorphism δ is just Hn(f). For this we recall that for
a cycle c ∈ Cn, one has ∂f (c, 0) = (−∂c, fc) = (0, fc) = i(fc), and hence from the
definition of δ (cf. (11.3))

δ : 〈c〉 7→ 〈i−1∂fp−1(c)〉 = 〈fc〉 = Hn(f)〈c〉.

This completes the proof.

We can now use the mapping cone construction to obtain a partial converse to
Proposition 10.24.

Proposition 27.5. Let (C•, ∂) and (D•, ∂
′) be two free chain complexes. Let

f : C• → D• denote a chain map. Then f is a chain equivalence if and only if
Hn(f) : Hn(C•, ∂)→ Hn(D•, ∂

′) is an isomorphism for every n ∈ Z.

Proof. Necessity was proved in Proposition 10.24. For sufficiency, we use the exact
sequence from Proposition 27.4. Since Hn(f) is an isomorphisms, we must have
Hn

(
Cone•(f)

)
= 0 for all n. Thus Cone•(f) is acyclic, and hence by Proposition

27.3 we see that f is a chain equivalence as desired.

The next result allows us to use the Künneth Theorem to compute the homology
of the product of two spaces. This is our first example of a theorem which can be
proved directly using a rather lengthy and horrible argument, but has a nice short
proof using the Acyclic Models Theorem 23.8.

Theorem 27.6 (Eilenberg-Zilber). For topological spaces X and Y , there exists a
natural chain equivalence

Ω: C•(X × Y )→ C•(X)⊗ C•(Y )

which is unique up to chain homotopy. Thus for all n ≥ 0, we have

Hn(X × Y ) ∼= Hn(C•(X)⊗ C•(Y )).

We will call any such map Ω an Eilenberg-Zilber morphism. It is not unique,
but it is unique up to chain homotopy. In Lecture 31 we will write down an explicit
formula for one such Ω. Before starting the proof of Theorem 27.6, we need one more
lemma.

Lemma 27.7. Define a map

θ : C0(X × Y )→ C0(X)⊗ C0(Y )

by setting θ(x, y) := x⊗ y. Then θ induces a natural (in X and Y ) isomorphism

H0(X × Y )→ H0(C•(X)⊗ C•(Y )).
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Proof. Naturality is clear: if f : X → X ′ and g : Y → Y ′ then

θ(f, g)#(x, y) = θ(f(x), g(y)) = f(x)⊗ g(y) = (f# ⊗ g#)(x⊗ y) = (f# ⊗ g#)θ(x, y).

To show that there is a well-defined map in homology, we need only show that θ
maps a boundary to a boundary. Let us denote the boundary operator in C•(X) by
∂X , the boundary operator in C•(Y ) by ∂Y , the boundary operator in C•(X ×Y ) by
∂X×Y , and finally the boundary operator in C•(X)⊗ C•(Y ) by ∆, so that

∆(c⊗ c′) = ∂Xc⊗ c′ + (−1)nc⊗ ∂Y c′, ∀ c⊗ c′ ∈ Cn(X)⊗ Cm(Y ).

Now suppose σ : ∆1 → X × Y is a singular 1-simplex in X × Y . Let σ(0) = (x0, y0)
and σ(1) = (x1, y1). Then ∂X×Y σ = (x1, y1) − (x0, y0). The path components of
X × Y are of the form X ′ × Y ′ where X ′ is a path component of X and Y ′ is a
path component of Y , and thus there exist singular 1-simplices τ : ∆1 → X and
ρ : ∆1 → Y such that

τ(0) = x0, τ(1) = x1, ρ(0) = y0, ρ(1) = y1.

Consider now the singular 1-chain c := τ⊗y1+x0⊗ρ in C•(X)⊗C•(Y ). We compute:

∆c = ∂Xτ ⊗ y1 + (−1)1τ ⊗ ∂Y y1

+ ∂Xx0 ⊗ ρ+ (−1)0x0 ⊗ ∂Y ρ
=x1 ⊗ y1 − x0 ⊗ y1 + 0 + 0 + x0 ⊗ y1 − x0 ⊗ y0

=x1 ⊗ y1 − x0 ⊗ y0.

Thus
θ(∂X×Y σ) = x1 ⊗ y1 − x0 ⊗ y0 = ∆c.

Thus θ maps boundaries to boundaries and hence induces a homomorphism H0(X ×
Y ) → H0(C•(X) ⊗ C•(Y )). It is clear this map is an isomorphism, since the map
x ⊗ y 7→ (x, y) induces a homomorphism H0(C•(X) ⊗ C•(Y )) → H0(X × Y ) which
inverts it.

Now let us prove the theorem.

Proof of the Eilenberg-Zilber Theorem 27.6. We will apply the Acyclic Models The-
orem from Lecture 23. Let Top × Top denote the category with objects all ordered
pairs (X,Y ) of topological spaces and morphisms all ordered pairs of continuous
maps. (Note: we do not require Y to be a subspace of X; this is not the same as the
category Top2.)

Now we define a family of models M for Top× Top. Let

M :=
{

(∆i,∆j) | i, j ≥ 0
}
.

We define two functors

S•, T• : Top× Top→ Comp
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by
S•(X,Y ) := C•(X × Y ), T•(X,Y ) := C•(X)⊗ C•(Y ).

We claim that for all n ≥ 0, both Sn and Tn are free with basis contained in M,
and moreover that every model (∆i,∆j) is both S•-acyclic in positive degrees and
T•-acyclic in positive degrees.

Let’s start with S•. Let di : ∆i → ∆i ×∆i denote the diagonal map x 7→ (x, x).
Thus di ∈ Ci(∆

i × ∆i) = Si(∆
i,∆i). We claim that Xi := {di} is an Si-model

basis. Indeed, if (X,Y ) is any object in Top × Top and if σ : ∆i → X × Y is any
singular i-simplex in Si(X,Y ) = Ci(X × Y ) then we can write σ = (σX × σY ) ◦ di,
where σX = pX ◦ σ and σY = pY ◦ σ, and pX : X × Y → X and pY : X × Y → Y
are projections. Conversely, given any pair of singular i-simplices τ : ∆i → X and
τ ′ : ∆i → Y , the composition (τ × τ ′)◦di is a singular i-simplex in X×Y . Thus {di}
is indeed a model basis for Si.

Next, since ∆i×∆j is convex, it follows that any model (∆i,∆j) ∈M is S•-acyclic
in positive degrees. (This is Corollary 13.3.)

Now let us move onto T•. By Problem L.2 (and its solution), for any (X,Y ) ∈
Top× Top, Ci(X)⊗ Cj(Y ) is free abelian with basis

{σ ⊗ τ | σ : ∆i → X, τ : ∆j → Y }.

By Example 23.4, the functor Ci is free with model basis {`i}, with `i : ∆i → ∆i the
identity map (thought of as a singular i-simplex in ∆i). It follows that Tn is free
with basis contained in M: a Tn-model basis is

{`i ⊗ `j | i+ j = n}.

The proof that each model is T•-acyclic in positive degrees is much harder, and this
is the reason we first carried out the digression above. By Corollary 13.3 again,
combined with Proposition 27.5 above, we see that C•(∆

i) is chain equivalent to the
chain complex

. . . 0→ 0→ 0→ Z
in degree 0

→ 0→ 0→ 0→ . . .

Thus by Corollary 26.4, T•(∆
i,∆j) = C•(∆

i) ⊗ C•(∆j) is chain equivalent to the
chain complex

. . . 0→ 0→ 0→ Z⊗ Z
in degree 0

→ 0→ 0→ 0→ . . .

Thus in particular Hn(T•(∆
i,∆j)) = 0 for all n > 0. (One can also prove this used

the Algebraic Künneth Theorem 26.5 from the last lecture.)
We have now verified that the hypotheses of the Acyclic Models Theorem and its

corollary (Corollary 23.9) are satisfied. To complete the proof we need only define
a natural equivalence Θ: H0 ◦ S• → H0 ◦ T•. But this was precisely the content
of Lemma 27.7—we can take Θ to be the map induced by θ. Thus we can apply
Corollary 23.9 to obtain a natural chain equivalence Ω: S• → T•, which is unique up
to chain homotopy and which satisfies H0(Ω) = Θ. This completes the proof.
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Remark 27.8. An Eilenberg-Zilber morphism Ω: C•(X × Y ) → C•(X) ⊗ C•(Y )
is necesarily given by Ω0(x, y) = x ⊗ y in degree 0. This is a seemingly stronger
statement than Theorem 27.6, where told us merely that the induced map H0(Ω) is
the same as the map induced by θ from Lemma 27.7.

However, this follows immediately from the naturality of Ω. To see this, observe
that if {∗} is a space with one point then Ω: C•({∗} × {∗})→ C•({∗})⊗ C•({∗}) is
the map ∗ 7→ ∗ ⊗ ∗ in degree zero (there is no choice about that!) Now suppose X
and Y are arbitrary topological spaces, and let (x, y) ∈ X ×Y be an arbitrary point.
Consider maps p : {∗} → X and q : {∗} → Y such that p(∗) = x and q(∗) = y. Then
since Ω is natural,

Ω0(x, y) = Ω0(p#, q#)(∗, ∗) = (p#, q#)Ω0(∗, ∗) = (p#, q#)(∗ ⊗ ∗) = x⊗ y.

Putting the pieces together, we obtain our desired result, which is usually known
as the Künneth Formula (in contrast to the Algebraic Künneth Theorem proved last
lecture.)

Corollary 27.9 (The Künneth Formula). Let X and Y be topological spaces. Then
for every n ≥ 0 there is a split exact sequence

0→
⊕
i+j=n

Hi(X)⊗Hj(Y )→ Hn(X × Y )→
⊕

k+l=n−1

Tor
(
Hk(X), Hl(Y )

)
→ 0.

Thus

Hn(X × Y ) ∼=

 ⊕
i+j=n

Hi(X)⊗Hj(Y )

⊕( ⊕
k+l=n−1

Tor
(
Hk(X), Hl(Y )

))
.

This gives us (yet another) way to compute the homology of Sn × Sm (recall we
already saw two ways to do this in Problem I.6 and the discussion just after Corollary
20.9). We obtain immediately:

Example 27.10. Let m,n ≥ 1. If m 6= n then

Hi(S
m × Sn) =

{
Z, i = 0,m, n,m+ n,

0, otherwise.

If m = n then

Hi(S
m × Sn) =


Z, i = 0, 2m,

Z⊕ Z, i = m,

0, otherwise.

However now we can also compute more complicated spaces, such as RPm×RPn.
A collection of examples for you to try is on Problem Sheet M.
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LECTURE 28

Cochain complexes and cohomology

The last four lectures have all centred on how the homology functor interacts with
the tensor product functor � ⊗ A. We now repeat this theme, only instead of the
functor �⊗A we use the functor Hom(�, A).

To begin with though, consider the functor Hom(A,�) : Ab → Ab (i.e. with
the � in the second position instead.) This is defined as one might expect: to an
abelian group B it associates the abelian group Hom(A,B), and if f : B → B′ is a
homomorphism between two abelian groups then

Hom(A, f) : Hom(A,B)→ Hom(A,B′)

is defined by sending g : A→ B to f ◦ g : A→ B′. It is routine to see that this is an
additive well-defined functor.

However, when we try this with the functor Hom(�, A), we come across a problem.
In this case if f : B → B′ is a homomorphism then there is a natural induced map that
sends a homomorphism g : B′ → A to g ◦ f : B → A. Denoting this homomorphism
by Hom(f,A), we have

Hom(f,A) : Hom(B′, A)→ Hom(B,A).

But this goes the “wrong” way round! This means that Hom(�, A) is not a functor
(at least as we have defined functors so far). Luckily, this can be easily rectified, by
taking a slightly more liberal-minded approach to the definition of a functor.

Definition 28.1. Let C be a category. The opposite category is the category Cop

with
obj(Cop) := obj(C),

and morphism sets given by,

HomCop(A,B) := HomC(B,A), A,B ∈ obj(C).

The composition ◦op in Cop is defined by

f ◦op g := g ◦ f,

where ◦ is the composition in C. This makes sense, i.e. it defines a map

HomCop(A,B)×HomCop(B,C)→ HomCop(A,C).

One easily checks that Cop is a well-defined category; the identity element in HomCop(A,A)
is just the identity element in HomC(A,A), and associativity of ◦op follows from as-
sociativity of ◦.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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We can use the notion of the opposite category to extend the definition of a
functor.

Definition 28.2. Let C and D be categories. A contravariant functor T : C→ D is
simply a functor Cop → D. Let us spell out exactly what this means: A contravariant
functor associates to each A ∈ obj(C) an object T (A) ∈ obj(D), and to each morphism

A
f−→ B in C a morphism T (B)

T (f)−−−→ T (A) in D which satisfies the following two
axioms:

1. If A
f−→ B

g−→ C in C then T (C)
T (g)−−−→ T (B)

T (f)−−−→ T (A) in D and

T (g ◦ f) = T (f) ◦ T (g).

2. T (idA) = idT (A) for every A ∈ obj(C).

In other words, a contravariant functor is defined in exactly the same way as a normal
functor, apart from the fact that it reverses the directions of the arrows.

Remark 28.3. Contravariant functors are not really anything new, since they are
just (normal) functors from the opposite category. In particular, up to remembering
to reverse directions of arrows, all the abstract results we have proved about functors
between categories continue to hold for contravariant functors too. As an easy test
of the definitions, I invite you to explore what a natural transformation between two
contravariant functors looks like.

Example 28.4. With this new terminology, ifA is an abelian group then Hom(�, A) : Ab→
Ab is a contravariant functor.

The type of functor we have studied up to now (i.e. with the arrows pointing the
right way round) is sometimes called a covariant functor. When no confusion is
possible, we will normally refer to both covariant and contravariant functors simply
as “functors”.

Remark 28.5. If T : C→ C is a contravariant functor from a given category to itself,
then T ◦ T is a covariant functor (as reversing the arrows twice means they go in
the right direction again). Thus Hom(Hom(�, A), A) : Ab→ Ab is a functor. Taking
A = R and restricting to real vector spaces, this is the functor that assigns to a vector
space its double dual, cf. Theorem 21.5.

Let us see what happens when we apply the contravariant functor Hom(�, A) to
a chain complex (C•, ∂). Applying Hom(�, A) to ∂ : Cn → Cn−1 we get maps

d := Hom(∂,A) : Hom(Cn−1, A)→ Hom(Cn, A),

defined by
dγ(c) = γ(∂c), γ ∈ Hom(Cn−1, A), c ∈ Cn,

and hence we get a sequence

· · · Hom(Cn+1, A) Hom(Cn, A) Hom(Cn−1, A) · · ·d d
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This doesn’t immediately give us a chain complex, since the arrows are going the
wrong way. But this is easily fixed. Let us define

C̃−n := Hom(Cn, A).

Lemma 28.6. (C̃•, d) is a chain complex.

Proof. We need only check that d ◦ d = 0. But this is obvious: if γ ∈ C̃−n =
Hom(Cn, A) and dγ = δ then for any c ∈ Cn+2 we have

dδ(c) = δ(∂c) = γ(∂2c) = 0.

Thus dδ is zero1 in Hom(Cn+2, A) = C̃−n−2.

Nevertheless, negative indices are annoying.

So we introduce a notational “trick”. Set:

Cn := C̃−n.

Then d is a map Cn → Cn+1. This gives us the notion of a cochain complex.

Definition 28.7. A cochain complex is a sequence of abelian groups and homo-
morphisms

. . . Cn−1 Cn Cn+1 . . .d d

for n ∈ Z which satisfies
d2 = 0, ∀n ∈ Z.

We refer to the entire complex as (C•, d) or sometimes just C•. The maps d are
called the differentials2 of the cochain complex.

Definition 28.8. The fact that d2 = 0 means that if we define

Zn = Zn(C•) = ker d : Cn → Cn+1

and
Bn = Bn(C•) = im d : Cn−1 → Cn

then
Bn ⊆ Zn.

We call elements of Zn n-cocycles and elements of Bn n-coboundaries. We define
the nth cohomology group of the cochain complex C• to be the quotient group

Hn = Hn(C•) := Zn(C•)
/
Bn(C•).

If3 γ ∈ Zn then we will continue to the use the notation 〈γ〉 to denote the class in
Hn.

1This argument is implicitly using that Hom(�, A) is an additive functor: d2 = Hom(∂,A)2 =
Hom(∂2, A) = Hom(0, A) = 0; the last equality is only true due to additivity.

2The name “differential” is used (instead of “coboundary operator”) because of differential forms in
differential geometry, which gives rise to the de Rham cohomology of a manifold.

3I will usually use Greek letters for elements of cochain complexes, to help differentiate them from
elements of chain complexes.
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It is important to realise that (like with contravariant functors) we are not really
doing anything new here: if (C•, d) is a cochain complex then setting C̃−n := Cn gives
us a chain complex, and the homology in degree −n is the same as the cohomology
in degree n:

H−n(C̃•) = Hn(C•).

For this reason, we will not introduce the category of cochain complexes, since it is
just the same as the category of chain complexes, modulo our trick of replacing n by
−n. More importantly, this means that all the basic homological algebra results we
already proved for chain complexes continue to hold for cochain complexes, without
needing to reprove them. For instance, Theorem 11.5 still holds, which we will need
at the end of the lecture4.

As far as this course is concerned, the most important example of a cochain
complex is the following:

Definition 28.9. Let X be a topological space and let A be an abelian group. The
singular cochain complex of X with coefficients in A is the cochain complex
C•(X;A) where Cn(X;A) := Hom(Cn(X), A). We denote by Zn(X) and Bn(X) the
cocycles and coboundaries of this complex.

The singular cohomology of X with coefficients in A is the cohomology of
this complex. Taking A = Z, we obtain the singular cohomology H•(X) of X.

Proposition 28.10. Singular cohomology with coefficients in A defines a contravari-
ant functor Top→ Ab.

Proof. If f : X → Y is a continuous map, then we can define

f# : Cn(Y ;A)→ Cn(X;A), f#(γ)(σ) := γ(f#(σ)) = γ(f ◦ σ),

for γ : Cn(Y ) → A and σ : ∆n → X a singular n-simplex in X. If γ ∈ Zn(Y ) then
we claim that f#γ ∈ Zn(X). Indeed,

d(f#γ)(σ) = (f#γ)(∂σ) = γ(f#∂σ)
(∗)
= γ(∂f#σ) = (dγ)(f#σ) = 0,

where (∗) used the fact that we already know that f# is a chain map C•(X)→ C•(Y )
(Proposition 7.20). Similarly if γ ∈ Bn(Y ) then f#γ ∈ Bn(X). Thus f# induces a
map Hn(f) : Hn(Y ;A) → Hn(X;A). One easily sees that Hn(idX) = idHn(X) and
that if f : X → Y and g : Y → Z then

Hn(g ◦ f) = Hn(f) ◦Hn(g) : Hn(Z;A)→ Hn(X;A).

Let us now investigate the analogue of Eilenberg-Steenrod axioms for cohomology.

4Warning: Not everything works in exactly the same way though! For instance, since � ⊗ B is
only right exact, tensoring a cochain complex is slightly different to tensoring a chain complex. We will
investigate this more next lecture.
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Proposition 28.11 (The dimension axion for cohomology). Let X be a one-point
space. Then for any abelian group A,

Hn(X;A) =

{
A, n = 0,

0, n ≥ 0.

Proof. Recall from the proof of the dimension axiom for homology (see the solution
to Problem D.3) that if X is a one-point space then Cn(X) ∼= Z for all n ≥ 0, and
that ∂ : Cn(X)→ Cn−1(X) is an isomorphism when n is even and positive, and zero
if n is odd. Dualising, it follows immediately that Hn(X;A) = 0 for all n ≥ 1.

So let us look at H0(X;A). We have

C1(X)
∂=0−−→ C0(X)

0−→ 0.

Thus applying Hom(�, A) we get

0→ Hom(C0(X), A)
d=0−−→ Hom(C1(X), A),

and hence

H0(X;A) = ker(d : Hom(C0(X), A)→ Hom(C1(X), A) = Hom(C0(X), A) ∼= Hom(Z, A).

But Hom(Z, A) ∼= A, since a homomorphism ϕ : Z → A is uniquely determined by
ϕ(1) ∈ A.

Theorem 28.12. If f, g : X → Y are homotopic then they induce the same homo-
morphism Hn(Y ;A)→ Hn(X;A) for all n ≥ 0.

Proof. Recall from Lecture 8 that the main step in the proof of the homotopy axiom
was to show that the following claim: If X is a topological space and we define
inclusions ı,  : X ↪→ X × I by

ı(x) := (x, 0), (x) := (x, 1).

Then there exists a chain homotopy P : Cn(X)→ Cn+1(X × I) such that

∂P + P∂ = # − ı#

(this was Proposition 8.5.) Applying the functor Hom(�, A) to P , we get a map
Q := Hom(P,A). One checks that Q satisfies.

dQ+Qd = # − ı#.

This allows us to finish the proof in exactly the same way as we did in Theorem 8.9:
Let F : X × I → Y be a homotopy from f to g. Then

f = F ◦ ı, g = F ◦ .

Thus as Hn is a contravariant functor, we have

Hn(f) = Hn(F ◦ ı) = Hn(ı) ◦Hn(F ) = Hn() ◦Hn(F ) = Hn(g).
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Now let us define relative cohomology and prove the analogue of the long exact
sequence axiom. First, let us note the following result, whose proof is on Problem
Sheet N.

Proposition 28.13. LetA be an abelian group. The contravariant functor Hom(�, A)

is left exact5. That is, if B
f−→ B′

g−→ B′′ → 0 is exact then

0→ Hom(B′′, A)
Hom(g,A)−−−−−−→ Hom(B′, A)

Hom(f,A)−−−−−−→ Hom(B,A)

is exact.

In fact, we will need the following result, whose proof is an immediate consequence
of Lemma 25.13 (cf. the solution to Problem L.4.)

Lemma 28.14. If T : Ab → Ab is an additive contravariant functor and 0 → A →
B → C → 0 is any split exact sequence, then 0 → T (C) → T (B) → T (A) → 0 is
also a split exact sequence.

We then use:

Proposition 28.15. Let X ′ ⊆ X and let A be an abelian group. Then for every
n ≥ 0 there is a short exact sequence of abelian groups:

0→ Hom
(
Cn(X)

/
Cn(X ′), A

)
→ Hom(Cn(X), A)→ Hom(Cn(X ′), A)→ 0.

Thus there is also a short exact sequence of complexes:

0→ Hom
(
C•(X)

/
C•(X

′), A
)
→ C•(X;A)→ C•(X ′;A)→ 0.

Proof. The group Cn(X)
/
Cn(X ′) is a free abelian group: a basis is given by all cosets

of the form σ+Cn(X ′) where σ : ∆n → X has imσ * X ′. Thus by Problem F.6, the
sequence 0→ Cn(X ′)→ Cn(X)→ Cn(X)

/
Cn(X ′)→ 0 is a split exact sequence. By

Lemma 28.14, the sequence is still split exact after applying Hom(�, A), and then
by Problem E.5 the sequence of complexes is also exact.

Definition 28.16. Let X ′ ⊆ X be a subspace, and let A be an abelian group.
We define the relative cohomology groups with coefficients in A, written
Hn(X,X ′;A) of the pair (X,X ′) to be the cohomology of the complex C•(X,X ′;A) =
Hom

(
C•(X)

/
C•(X

′), A
)
.

It now follows directly from Theorem 11.5 that there is a long exact sequence in
cohomology.

Theorem 28.17 (The exact sequence axiom for cohomology). Let X ′ ⊆ X and let
A be an abelian group. Then there is an exact sequence

· · · → Hn(X,X ′;A)→ Hn(X;A)→ Hn(X ′;A)
δ−→ Hn+1(X,X ′;A) . . .

Moreover the connecting homomorphisms δ : Hn(X ′;A) → Hn+1(X,X ′;A) are nat-
ural.

5A contravariant functor T : C → D is said to be left exact if (when regarded as a normal functor),
T : Cop → D is left exact. The notion of right exactness for contravariant functors is defined analogously.
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The homotopy axiom extends to relative cohomology. The remaining axiom is
excision. For this we will just state the result. The proof is an easy adaption of the
proof of excision for homology (Theorem 14.8.)

Theorem 28.18 (The excision axiom for cohomology). Assume that X1, X2 are sub-
spaces of X such that X = X◦1 ∪X◦2 . Let A be an abelian group. Then the inclusion
ı : (X1, X1 ∩X2) ↪→ (X,X2) induces an isomorphism in cohomology:

Hn(ı) : Hn(X,X2;A)→ Hn(X1, X1 ∩X2;A) ∀n ≥ 0.

I will leave it up to you to formulate the precise axioms for a cohomology theory
with coefficients in A, and check that we have now verified that singular cohomology
with coefficients in A satisfies these axioms (modulo that, as with singular homology,
we can’t actually verify the weak equivalence axiom yet, as explained in item (2) of
the remarks after Definition 21.9)

It is also easy to see that the analogue of the Mayer-Vietoris sequence (Theorem
14.9) continues to hold for cohomology; I will leave it up to you to formulate the
precise statement.
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LECTURE 29

Cohomological Universal Coefficients
Theorems

In this lecture we prove three “Universal Coefficients” theorems for cohomology. The
first relates cohomology and homology. This requires us to define a “cohomological”
version of Tor, which (rather unhelpfully) is called Ext. The definition is essentially
the same as Tor, we just replace �⊗B with Hom(�, B).

Definition 29.1. Let A be an abelian group, and let 0 → K
f−→ F → A → 0 be a

short free resolution of A. Let B be any abelian group. We apply the contravariant
functor Hom(�, B) and obtain an exact sequence

0→ Hom(A,B)→ Hom(F,B)
Hom(f,B)−−−−−−→ Hom(K,B).

We define

Ext(A,B) := coker Hom(f,B) = Hom(K,B)
/

im Hom(f,B).

Thus Ext(A,B) measures the failure for Hom(�, B) to be right exact on 0→ K →
F → A → 0. In a similar as with Tor, we can view Ext(A,B) as a (co)homology
group. For this, as in (25.1), we first view the short free resolution as defining a chain
complex (C•, ∂) by setting:

Cn :=


F, n = 0,

K, n = 1,

0, n 6= 0, 1.

and defining the boundary map ∂ : C1 → C0 to be f : K → F . Then this chain
complex has the property that

H0(C•) = F/ im f ∼= A.

Instead of applying �⊗A as we did in Lecture 25, this time we apply Hom(�, B) to
obtain a cochain complex Hom(C•, B). This cochain complex has the property that

H1(Hom(C•, B)) = Ext(A,B).

Before stating a result giving the main properties of Ext, we first need a definition,

Definition 29.2. An abelian group D is said to be divisible if for every b ∈ D and
every n ∈ N, there exists a ∈ D such that na = b.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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Thus Z is not divisible, but Q or R or C are.

Theorem 29.3 (Properties of Ext). For a fixed abelian group A, Ext(A,�) is a co-
variant functor from Ab to itself, and Ext(�, A) is a contravariant functor. Morevoer:

1. If F is free group then Ext(F,B) = 0 for any abelian group B. If D is a divisible
group then Ext(B,D) = 0 for any abelian group B.

2. If A is a finitely generated group with torsion subgroup T (A) then Ext(A,Z) ∼=
T (A).

3. If 0 → A → A′ → A′′ → 0 is an exact sequence of abelian groups then for any
abelian group B there is an exact sequence

0→ Hom(A′′, B)→ Hom(A′, B)→ Hom(A,B)→ Ext(A′′, B)→ Ext(A′, B)→ Ext(A,B)→ 0,

(29.1)
Meanwhile if 0 → B → B′ → B′′ → 0 is an exact sequence of abelian groups,
then for any abelian group A there is an exact sequence

0→ Hom(A,B)→ Hom(A,B′)→ Hom(A,B′′)→ Ext(A,B)→ Ext(A,B′)→ Ext(A,B′′)→ 0,

(29.2)

4. If B is an abelian group and {Aλ | λ ∈ Λ} is a (possibly uncountable) family of
abelian groups then there is an isomorphism1

Ext
(⊕
λ∈Λ

Aλ, B
)
∼=
∏
λ∈Λ

Ext(Aλ, B).

and similarly

Ext
(
B,
∏
λ∈Λ

Aλ

)
∼=
∏
λ∈Λ

Ext(B,Aλ).

5. For any m ∈ N and any abelian group B,

Ext(Zm, B) ∼= B/mB.

Remark 29.4. Warning: The analogue of part (4) of Theorem 25.6 is false for Ext:
in general Ext(A,B) is not the same as Ext(B,A)! For example, Ext(Zm,Z) = Zm
and Ext(Z,Zm) = 0.

I won’t prove Theorem 29.3. The statements about Ext(A,�) are analogous to
the corresponding proofs in Theorem 25.6, modulo replacing tensor products with
Hom everywhere. For instance, the fact that Ext(F,B) = 0 for any free F starts
from the short free resolution 0 → 0 → F → F → 0, and the proof of (29.2) come
from the long exact sequence in cohomology associated to a short exact sequence of
cochain complexes, just as in the proof of (25.2) in Theorem 25.6. The corresponding
statements about Ext(�, A)—that Ext(�, D) ≡ 0 whenever D is divisible, and the

1Recall that the difference between
⊕

λ∈ΛAλ and
∏
λ∈ΛAλ is that an element of the former only has

finitely many non-zero elements, meanwhile an element of the latter is just an arbitrary element in the
product. If Λ is finite the two coincide.
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exact sequence (29.1)—are a little different though. For this one replaces short free
resolutions with “short divisible resolutions”, and I will leave this for you to investi-
gate on Problem Sheet N.

Instead, let us move onto establishing a link between homology and cohomology.
Let C• be a chain complex, and let A be an abelian group. We define a map

ζ : Hn(Hom(C•, A))→ Hom(Hn(C•), A)

by
ζ〈γ〉〈c〉 := γ(c). (29.3)

To check this is well-defined, we need to show that if γ, γ′ are two cocycles with
〈γ〉 = 〈γ′〉 in Hn(Hom(C•, A)) and c, c′ are two cycles with 〈c〉 = 〈c′〉 in Hn(C•) then

γ(c) = γ′(c′).

Indeed, we can write γ′ = γ + dδ and c′ = c+ ∂a. Then

γ′(c′) = (γ + dδ)(c+ ∂a)

= γ(c) + dδ(c) + γ(∂a) + dδ(∂a)

= γ(c) + δ(∂c) + dγ(a) + δ(∂2a)

= γ(c),

since ∂c = 0 as c is a cycle, and dγ = 0 as γ is a cocycle, and of course ∂2a = 0.

Theorem 29.5 (The Dual Universal Coefficients Theorem I). Let X be a topological
space and let A be an abelian group. Then for every n ≥ 0 there is an exact sequence

0→ Ext(Hn−1(X), A)→ Hn(X;A)
ζ−→ Hom(Hn(X), A)→ 0, (29.4)

where ζ is the map from (29.3). Moreover this sequence splits, and hence

Hn(X;A) ∼= Hom(Hn(X), A)⊕ Ext(Hn−1(X), A). (29.5)

Remark 29.6. The splitting of the sequence (29.4) is natural in A but not in X, and
hence the same is true of the isomorphism (29.5).

Just as with the Universal Coefficients Theorem 25.10, this is an immediate corol-
lary of a more general result about an arbitrary free chain complex.

Theorem 29.7 (The Dual Universal Coefficients Theorem II). Let (C•, ∂) denote a
free chain complex and let A denote an abelian group. Then for every n ≥ 0, there
is an exact sequence

0→ Ext
(
Hn−1(C•), A

)
→ Hn(Hom(C•, A))

ζ−→ Hom
(
Hn(C•), A

)
→ 0,

where ζ is the map from (29.3). Moreover this sequence splits, and hence

Hn(Hom(C•, A)) ∼= Hom
(
Hn(C•), A

)
⊕ Ext

(
Hn−1(C•), A

)
.

The splitting is natural in A but not in C•.
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We won’t prove Theorem 29.7, however the interested reader can simply regur-
gitate the proof of Theorem 25.12, but replace all instances of tensor products with
Hom instead, reversing arrows where appropriate, and use the properties of Ext
(Theorem 29.3) instead of properties of Tor (Theorem 25.6).

Definition 29.8. A topological space X is said to be of finite type if each homology
group Hn(X) is finitely generated.

The following corollary is perhaps the most useful application of Theorem 29.5.

Corollary 29.9. LetX be a topological space of finite type. Let Tn(X) = T (Hn(X))
denote the torsion subgroup of Hn(X). Then for all n ≥ 0

Hn(X) ∼= Hn(X)
/
Tn(X)⊕ Tn−1(X).

Proof. If A is any finitely generated group then Hom(A,Z) ∼= A/T (A) by Problem
N.2. Thus for X of finite type Hom(Hn(X),Z) ∼= Hn(X)

/
Tn(X). Next, by part (2)

of Theorem 29.3,
Ext(Hn−1(X),Z) ∼= Tn−1(X).

The claim follows from (29.5).

We could now extend Theorem 29.5 to a Künneth-type result. Indeed, if C•
and C ′• are chain complexes, then there is a natural way to make Hom(C•, C

′
•) into

a cochain complex. However, for our purposes this is not so useful, since there is
no analogue of the Eilenberg-Zilber Theorem 27.6 in this setting. Instead, we will
first prove a purely cohomological version of the Universal Coefficient Theorem for a
topological space of finite type, and then use that to deduce a Künneth-type result.

We need two auxiliary results.

Proposition 29.10. Let X be a topological space of finite type. There exists a
non-negative free chain complex E• such that every group En is finitely generated,
and such that E• is chain equivalent to the singular chain complex C•(X).

Remark 29.11. The assumption that X has finite type tells us that Hn(X) is finitely
generated for each n. But Cn(X) is never finitely generated (unless X is a finite set),
and thus Proposition 29.10 is non trivial.

Proof of Proposition 29.10. Let p : Zn(X)→ Hn(X) denote the map c 7→ 〈c〉. Since
Hn(X) is finitely generated, there exists a finitely generated subgroup Fn ⊆ Zn(X)
such that p|Fn : Fn → Hn(X) is surjective. Note Fn is free. Let F ′n := ker p|Fn . Now
set

En := Fn ⊕ F ′n−1.

Then En is finitely generated and free. Define ε : En → En−1 by ε(c, c′) := (c′, 0).
Then clearly ε ◦ ε = 0, and thus (E•, ε) is a free finitely generated chain complex.
Moreover

Hn(E•) =
ker(ε : En → En−1)

im(ε : En+1 → En)
= Fn/F

′
n = Hn(X). (29.6)
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Now let us build a chain map f : (E•, ε) → (C•(X), ∂). Since F ′n is free abelian, by
Lemma 22.3 there exists a homomorphism g : F ′n → Cn+1(X) such that ∂g(c′) = c′

for all c′ ∈ F ′n. Define

f : En → Cn(X), f(c, c′) := c+ g(c′).

Then
∂f(c, c′) = ∂(c+ g(c′)) = ∂c+ c′ = c′,

since c ∈ Fn ⊆ Zn(X), so ∂c = 0. Moreover

fε(c, c′) = f(c′, 0) = c′.

Thus f ◦ ε = ∂ ◦ f , and hence f is a chain map. Moreover using (29.6), the induced
map in homology is given by

Hn(f) : Hn(E•)→ Hn(X), 〈c, 0〉 7→ 〈c〉,

which is obviously an isomorphism. Since both E• and C•(X) are free, we can
invoke Proposition 27.5 to conclude that f is a chain equivalence. This completes
the proof.

Proposition 29.12. If E• is a free chain complex such that each group En is finitely
generated, then for any abelian group A, there is an isomorphism of cochain com-
plexes

Hom(E•,Z)⊗A ∼= Hom(E•, A).

Proof. Define
h : Hom(En,Z)⊗A→ Hom(En, A)

by
h(γ ⊗ a)(c) = γ(c) · a, γ ∈ Hom(En,Z), a ∈ A, c ∈ En,

note this makes sense as γ(c) ∈ Z, and thus we can multiple a by γ(c) in A. Then h
is clearly a chain map. To prove that h is an isomorphism, we argue by induction on
the rank of En. If the rank is 1, then En ∼= Z, and this follows from Z⊗A ∼= A and
Hom(Z, A) = A. For the inductive step, we note that both Hom(�, A) and � ⊗ A
commute with finite direct sums:

Hom(B ⊕B′, A) = Hom(B,A)⊕Hom(B′, A),

and
(B ⊕B′)⊗A ∼= (B ⊗A)⊕ (B′ ⊕A)

see part (5) of Proposition 24.8.

Remark 29.13. Note that if C• and C ′• are chain equivalent complexes, then for
any abelian group A the chain complexes C• ⊗ A and C ′• ⊗ A are chain equiv-
alent, and similarly the cochain complexes Hom(C•, A) and Hom(C ′•, A) are also
chain equivalent. The tensor products statement is a special case of Lemma 25.2,
and the Hom statement is clear: if f : C• → C ′• is a chain equivalence then so
Hom(f,A) : Hom(C ′•, A)→ Hom(C•, A).
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Here is the promised “purely cohomological” version of the Universal Coefficients
Theorem.

Theorem 29.14 (The Universal Coefficients Theorem for Cohomology). If X is a
topological space of finite type, then for any abelian group A and any n ≥ 0, there
is an exact sequence

0→ Hn(X)⊗A h−→ Hn(X;A)→ Tor(Hn+1(X), A)→ 0,

where h is the map 〈γ〉 ⊗ a 7→ 〈γ · a〉, and (as in Proposition 29.12), γ · a ∈
Hom(Cn(X), A) is defined by

(γ · a)(σ) := γ(σ) · a ∈ A, σ : ∆n → X.

Moreover this sequence splits, and hence

Hn(X;A) ∼= Hn(X)⊗A⊕ Tor(Hn+1(X), A).

Proof. By Proposition 29.10, there is a free chain complex E• such that each En
is finitely generated, and such that Hn(X) ∼= Hn(E•) for all n. Now set E• :=
Hom(E•,Z). Then E• is a free cochain complex. But since cochain complexes are
really just chain complexes in disguise (only with the indices flipped), we can apply
the Universal Coefficient Theorem 25.12 directly2 to E• to obtain split short exact
sequences

0→ Hn(E•)⊗A→ Hn(E• ⊗A)→ Tor
(
Hn+1(E•), A

)
→ 0.

But using Remark 29.13, Hn(E•) = Hn(Hom(E•,Z)) = Hn(Hom(C•(X),Z)) =
Hn(X). Moreover by Proposition 29.12, one has:

E• ⊗A = Hom(E•,Z)⊗A ∼=
isomorphic

Hom(E•, A) '
chain equivalent

Hom(C•(X), A).

Thus by Proposition 10.24, we have Hn(E•⊗A) ∼= Hn(X;A). The result follows.

We conclude this lecture by using Theorem 29.14 to prove a Künneth-type result
for cohomology. To state the result, let us introduce the following notation: given
topological spaces X and Y , and γ ∈ Ci(X), δ ∈ Cj(Y ), define γ⊗δ ∈ Hom(C•(X)⊗
C•(Y ),Z) by

(γ ⊗ δ)(σ ⊗ τ) :=

{
γ(σ)δ(τ), if σ ∈ Ci(X), τ ∈ Cj(Y ),

0, otherwise.

Now let Ω: C•(X × Y ) → C•(X) ⊗ C•(Y ) be an Eilenberg-Zilber morphism (cf.
Theorem 27.6.) Then there is an induced map

Hom(Ω,Z) : Hom
(
C•(X)⊗ C•(Y ),Z

)
→ Hom(C•(X × Y ),Z) = C•(X × Y ),

2For the reader unhappy here: set Ẽn := E−n = Hom(E−n,Z). Then Ẽ• is a non-positive free chain
complex and H−n(Ẽ•) = Hn(E•). To apply Theorem 25.12, we work with Ẽ•, and then at the last stage
switch back to E• to get a cohomological statement.
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and hence a map

Hn(Hom(Ω,Z)) : Hn
(

Hom
(
C•(X)⊗ C•(Y ),Z

))
→ Hn(X × Y ).

Thus there is a well-defined map

η : H i(X)⊗Hj(Y ) 7→ H i+j(X × Y )

given by
η : 〈γ〉 ⊗ 〈δ〉 7→ H i+j(Hom(Ω,Z))〈γ ⊗ δ〉.

Remark 29.15. If you are worried about why

〈γ〉 ⊗ 〈δ〉 7→ 〈γ ⊗ δ〉

makes sense at the level of cohomology classes, see Lemma 31.11 in Lecture 31.

Theorem 29.16 (The Künneth Formula for Cohomology). Let X and Y be topolog-
ical spaces of finite type. Then for every n ≥ 0, there is a split short exact sequence

0→
⊕
i+j=n

H i(X)⊗Hj(Y )
η−→ Hn(X × Y )→

⊕
k+l=n+1

Tor
(
Hk(X), H l(Y )

)
→ 0.

Proof. By Proposition 29.10, there exist finitely generated free chain complexes E•
and E′• which are chain equivalent to C•(X) and C•(Y ). Then E• ⊗ E′• is chain
equivalent to C•(X)⊗C•(Y ) by Corollary 26.4, and we have a commutative diagram
where the vertical maps are isomorphisms:

H i(X)⊗Hj(Y ) H i+j(X × Y )

H i(E•)⊗Hj(E′•) H i+j
(
Hom(E• ⊗ E′•,Z)

)
.

η

Thus it suffices to prove the statement with the bottom row, rather than top row. But
since E• and E′• are finitely generated in each degree, it follows that the chain com-
plexes Hom(E•,Z) and Hom(E′•,Z) are free. Thus we can apply Künneth Theorem
26.5 to conclude.
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LECTURE 30

The cup product and the cohomology
ring

Up to now, we have always worked with coefficients A where A is some abelian group.
The aim of this lecture is to show that if we take A to be a commutative ring R,
then the singular cohomology with coefficients in R is also a ring. To begin with, let
us check we all understand the definition of a ring.

Definition 30.1. A ring R is an abelian group (where we use + to denote addition in
the group structure), together with an additional operation “·”, called multiplication,
which is associative:

(r · s) · t = r · (s · t), ∀ r, s, t ∈ R,

and which has multiplicative identity, that is, an element 1 ∈ R such that

r · 1 = r = 1 · r, ∀ r ∈ R.

Moreover, multiplication should be distributive over addition:

r · (a+ b) = (r · a) + (r · b), (a+ b) · r = a · r + b · r, ∀ a, b, r ∈ R.

Most of the time we will just write rs instead of r · s. If 0 denotes the zero
element for the group structure, then we do not take 0 6= 1 as part of the definition.
Nevertheless it takes merely a moment of thought to note that if 0 = 1 then R = {0},
in which case we call R the zero ring.

Definition 30.2. A ring homomorphism f : R → S between two rings is a ho-
morphism between R and S as abelian groups which also preserves the multiplicative
structure:

f(rs) = f(r)f(s), f(1R) = 1S .

The category Rings of rings has objects the rings, and morphisms the ring homomor-
phisms, and composition the usual composition of homomorphisms.

There is a forgetful functor Rings → Ab. A ring R is commutative if rs = sr
for all r, s ∈ R. Commutative rings form a full subcategory ComRings of Rings.

Definition 30.3. A subset S of a ring R is a subring if it can be regarded as a ring
with the addition and the multiplication restricted from R to S. Thus S is a subring
if 1R ∈ S and for any r, s ∈ S, all of rs, r + s, r − s belong to S.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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Subrings are the ring-theoretic analogue of subgroups. The analogue of a normal
subgroup is an ideal1:

Definition 30.4. A nonempty subset I of a ring R is then said to be a left ideal
in R if, for any s, t ∈ I and r ∈ R, all of s+ t, rs are in I. Equivalently, an additive
subgroup I is a left ideal if R · I ⊆ I. Similarly an additive subgroup I is a right
ideal if I · R ⊆ I. If I is both a left ideal and a right ideal, then I is said to be a
two-sided ideal.

Thus every ideal in a commutative ring is a two-sided ideal. An ideal I ⊂ R is
said to be proper if I 6= R.

Definition 30.5. If R is a ring and I is a two-sided ideal, then there is a well-defined
equivalence relation on R given by r ∼ s if r − s ∈ I. The quotient ring R/I has
as an elements the cosets r+ I, with addition given by (r+ I) + (s+ I) := (r+ s) + I
and multiplication by (r + I)(s + I) = rs + I. The natural quotient map R → R/I
is then a surjective ring homomorphism.

Definition 30.6. A graded ring R is a ring R with additive subgroups Rn, for
n ≥ 0, such that R =

⊕
nR

n, and such that Rn · Rm ⊆ Rn+m. A graded ring
homomorphism f : R→ S between graded rings is a ring homomorphism with the
property that f(Rn) ⊆ Sn for all n ≥ 0. This forms the category GradedRings of
graded rings.

There is a forgetful functor GradedRings → Rings. Conversely, if R is any ring,
then R can be made into a graded ring by setting R0 = R and Rn = 0 for n ≥ 1.

Definition 30.7. A graded ring R is said to be graded commutative

r · s = (−1)nms · r, ∀ r ∈ Rn, s ∈ Rm.

This gives rise to a full subcategory ComGradedRings of GradedRings.

An element x in a graded ring is said to be homogeneous if x ∈ Rn for some
n. In this case one says that x has degree n. The zero element 0 therefore has
degree n for any (and every) n, and the identity element 1 is always2 homogeneous
of degree zero. We use the convention that the degree of an element is not defined
if the element is not homogeneous. An ideal I is said to be homogeneous if it is
generated by homogeneous elements.

Example 30.8. Let R be a commutative ring, and let Q1, . . . , Qk denote formal
variables. The polynomial ring R[Q1, . . . , Qk] has elements all formal sums

x =
∑

ri1i2···ik ·Q
i1
1 Q

i2
2 · · ·Q

ik
k , ri1i2···ik ∈ R, ij ≥ 0, 1 ≤ j ≤ k.

Then R[Q1, . . . , Qn] is a graded ring, where

Rn :=

∑ ri1i2···ik ·Q
i1
1 Q

i2
2 · · ·Q

ik
k |

k∑
j=1

ij = n


1This analogy doesn’t quite work: for instance, a proper ideal is not even a subring.
2Exercise: Why?
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Thus Rn is generated by all monomials of total degree3 n.

The following lemma is a trivial piece of algebra, whose proof I leave to you. We
will need it in the proof of Theorem 30.20 at the end of the lecture.

Lemma 30.9. If I is a homogeneous two-sided ideal in a graded ring, then the quotient
ring R/I is again a graded ring. Indeed,

R/I =
⊕
n≥0

(Rn + I)
/
I.

Definition 30.10. Let X be a topological space and let R be a ring. The total
cohomology of X with coefficients in R is given by

HF(X;R) :=
⊕
n≥0

Hn(X;R).

This is well-defined, since a ring is in particular an abelian group. I use the notation
HF instead of H• to indicate we are taking the direct sum of all the cohomology
groups (as opposed to considering the cohomology groups as a complex). Similarly
we denote by CF(X;R) :=

⊕
nC

n(X;R) (as a direct sum, not a chain complex).

Our aim is to make HF(X;R) into a graded ring when R is commutative. We
shall do this by first making CF(X;R) into a graded ring, and then showing that the
ring structure descends to cohomology. For this, let us first recall the face maps from
Lecture 7:

εi : ∆n−1 → ∆n, i = 0, 1, . . . , n

that maps the standard (n− 1)-simplex ∆n−1 homeomorphically onto the ith face of
∆n. Explicitly,

ε0(s0, s1, . . . , sn−1) = (0, s0, s1, . . . , sn−1),

for i = 0, and for 1 ≤ i ≤ n− 1,

εi(s0, s1, . . . , sn−1) = (s0, s1, . . . , si−1, 0, si, . . . , sn−1),

and finally
εn(s0, s1, . . . , sn−1) = (s0, s1, . . . , sn−1, 0).

Where necessary we will write εni : ∆n−1 → ∆n.

Definition 30.11. If 0 ≤ i ≤ n, we define the ith front face to be the map
Fni : ∆i → ∆n by

Fni (s0, s1, . . . , si) = (s0, s1, . . . , si, 0, . . . , 0),

and we define the ith back face Bi
n : ∆i → ∆n by

Bn
i (s0, s1, . . . , si) = (0, . . . , 0, s0, s1, . . . , si).

3Our convention implies that only monomials get a degree; an arbitrary polynomial does not have a
degree in the sense of graded rings.
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As with the face maps, where possible we will just write Fi and Bi. Note that
Fnn = Bn

n = id∆n , meanwhile Fn0 has image e0 = (1, 0, . . . , 0) and Bn
0 has image

en = (0, . . . , 0, 1). The next lemma tells us how these maps compose with each other.

Lemma 30.12.

1. One has εn+1
0 = Bn+1

n and εn+1
n+1 = Fn+1

n .

2. One has:
Bn
m+p ◦Bm+p

p = Bn
p , Fnm+p ◦ Fm+p

p = Fnp ,

and
Bn+m+p
m+p ◦ Fm+p

m = Fn+m+p
n+m ◦Bn+m

m .

3. One has

εn+1
i ◦ Fnm =

{
Fn+1
m+1 ◦ ε

m+1
i , if i ≤ m,

Fn+1
m , if i ≥ m+ 1.

and

εn+1
i ◦Bn

m =

{
Bn+1
m , if i ≤ n−m,

Bn+1
m+1 ◦ ε

m+1
i+m−n, if i ≥ n−m+ 1.

Proof. Evaluate both sides on a typical element of the desired simplex.

We now come to the key definition of this lecture.

Definition 30.13. Let X be a topological space and let R be a ring. If α ∈ Cn(X;R)
and β ∈ Cm(X;R), we define α ^ β ∈ Cn+m(X;R), the cup product of α and β
by requiring that

(α ^ β)(σ) = α(σ ◦ Fn) · β(σ ◦Bm), ∀σ : ∆n+m → X (30.1)

(since Cn+m(X) is free abelian with basis the singular (n+m)-simplices σ : ∆n+m →
X, equation (30.1) does indeed uniquely determine an element of Cn+m(X;R). The
expression makes sense: if σ : ∆n+m → X then σ◦Fn : ∆n → X and σ◦Bm : ∆m → X,
so that α(σ ◦ Fn) and β(σ ◦ Bm) are well-defined elements of R which can then be
multiplied to give another element of R.

Remark 30.14. Cup products are usually only defined for R a commutative ring.
The reason for this will become apparent next lecture, when we show that if the
coefficient ring is commutative, then the (graded) cohomology ring is graded com-
mutative, see Remark 30.21 below. Nevertheless, everything we do in this lecture
works fine for any (possibly non-commutative) ring, so for now we won’t impose
commutativity on R.

The cup products extends by linearity to define a function

CF(X;R)× CF(X;R)→ CF(X;R)

by (∑
i

αi

)
^

∑
j

βj

 :=
∑
i,j

αi ^ βj .

Let us first check this gives us a ring structure.
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Proposition 30.15. For any topological space X and any ring R, CF(X;R) is a
graded ring under the cup product.

Proof. Suppose α ∈ Cn(X;R) and β, γ ∈ Cm(X;R). We claim that α ^ (β + γ) =
α ^ β + α ^ γ. For this, take σ : ∆n+m → X. Then

(α ^ (β + γ))(σ) = α(σ ◦ Fn) · (β + γ)(σ ◦Bm)

= α(σ ◦ Fn) · β(σ ◦Bm) + α(σ ◦ Fn) · γ(σ ◦Bm)

= α ^ β(σ) + α ^ γ(σ).

A similar computation shows that (α+β) ^ γ = α ^ γ+β ^ γ. To check associativity,
suppose α ∈ Cn(X;R), β ∈ Cm(X;R), and γ ∈ Cp(X;R). Then if σ : ∆n+m+p → X,
one has

((α ^ β) ^ γ)(σ) = α(σ ◦ Fn+m ◦ Fn) · β(σ ◦ Fn+m ◦Bm) · γ(σ ◦Bp),

and similarly

(α ^ (β ^ γ))(σ) = α(σ ◦ Fn) · β(σ ◦Bm+p ◦ Fm) · γ(σ ◦Bm+p ◦Bp).

By part (2) of Lemma 30.12, the right-hand side of both of these equations is equal
to

α(σ ◦ Fn) · β(σ ◦ Fn+m ◦Bm) · γ(σ ◦Bp).

Finally, define a cochain ν ∈ C0(X;R) by

ν(x) = 1R, ∀x ∈ X, (30.2)

and then extending by linearity (recall we identify singular 0-simplices in X with
points in X). It is clear that ν ^ α = α = α ^ ν for any α ∈ Cn(X;R) and any
n ≥ 0. Thus CF(X;R) is indeed a graded ring.

Remark 30.16. The distributive laws give bilinearity of the cup product as a map

CF(X;R)× CF(X;R)→ CF(X;R),

and hence we may regard cup product as a map on the tensor product

^ : CF(X;R)⊗ CF(X;R)→ CF(X;R).

Now let us investigate the functorial properties of ^.

Proposition 30.17. Let f : X → Y . Then

f#(α ^ β) = f#α ^ f#β,

and moreover f#νY = νX , where the units νX , νY are as defined in (30.2)
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Proof. Take α ∈ Cn(Y ;R) and β ∈ Cm(Y ;R) and σ : ∆n+m → X. Then by defini-
tion

f#(α ^ β)(σ) = (α ^ β)(f#σ)

= (α ^ β)(f ◦ σ)

= α(f ◦ σ ◦ Fn) · β(f ◦ σ ◦Bm)

= α(f#(σ ◦ Fn)) · β(f#(σ ◦Bm))

= f#α(σ ◦ Fn) · f#β(σ ◦Bm)

= (f#α ^ f#β)(σ).

Next, if x ∈ X then f#νY (x) = νY (f(x)) = 1R. Since this holds for all x ∈ X, we
must have f#νY = νX .

We thus have:

Corollary 30.18. For a given ring R, there is a contravariant functor

CF(�;R) : Top→ GradedRings.

Unfortunately, the ring structure on CF(X;R) is not very useful, as it is too
“large”, and almost impossible to compute. This ring structure does not restrict the
homotopy axiom, and it is not graded commutative. However, as we will now see,
the total cohomology HF(X;R) also inherits a ring structure, and this structure is
much nicer.

Proposition 30.19. Let X be a topological space and let R be a ring. If α ∈
Cn(X;R) and β ∈ Cm(X;R) then

d(α ^ β) = dα ^ β + (−1)nα ^ dβ. (30.3)

Proof. Set p := n+m+1, so that both sides of (30.3) have degree p. Let σ : ∆p → X
be a singular p-simplex. Let us start with the right-hand side of equation (30.3). We
have

(dα ^ β + (−1)nα ^ dβ) (σ) = dα(σ ◦ Fn+1) · β(σ ◦Bm)

+ (−1)n (α(σ ◦ Fn) · dβ(σ ◦Bm+1))

=α(∂(σ ◦ Fn+1)) · β(σ ◦Bm)

+ (−1)n (α(σ ◦ Fn) · β(∂(σ ◦Bm+1)))

=

(
n+1∑
i=0

(−1)iα(σ ◦ Fn+1 ◦ εi)

)
· β(σ ◦Bm)

+ (−1)n

α(σ ◦ Fn) ·

m+1∑
j=0

(−1)jβ(σ ◦Bm+1 ◦ εj)

 .

Now by part (1) of Lemma 30.12, one has σ ◦ Fn+1 ◦ εn+1 = σ ◦ Fn+1 ◦ Fn = σ ◦ Fn
and similarly σ ◦ Bm+1 ◦ ε0 = σ ◦ Bm+1 ◦ Bm = σ ◦ Bm. Thus the last term of the
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first sum cancels with the first term of the second sum, and thus the right-hand side
is equal to

n∑
i=0

(−1)iα(σ◦Fn+1◦εi)·β(σ◦Bm)+(−1)n
m+1∑
j=1

(−1)jα(σ◦Fn)·β(σ◦Bm+1◦εj). (30.4)

Next, starting with the left-hand side of (30.3), we have

d(α ^ β)(σ) = (α ^ β)(∂σ)

=

p∑
i=0

(−1)i(α ^ β)(σ ◦ εi)

=

n∑
i=0

(−1)iα(σ ◦ εi ◦ Fn) · β(σ ◦ εi ◦Bm)

+

p∑
i=n+1

(−1)iα(σ ◦ εi ◦ Fn) · β(σ ◦ εi ◦Bm)

Since p−m = n+ 1, part (3) of Lemma 30.12 tells us that this sum is equal to

n∑
i=0

(−1)iα(σ◦Fn+1 ◦εi) ·β(σ◦Bm)+

p∑
i=n+1

(−1)iα(σ◦Fn) ·β(σ◦Bm+1 ◦εi−n). (30.5)

The first sum in (30.5) is already the same as the first sum in (30.4). The second
sum is too, if we set j = i− n. This completes the proof.

We can now prove the main result of today’s lecture.

Theorem 30.20. For any ring R, there is a contravariant functor

HF(�;R) : hTop→ GradedRings.

Proof. Let ZF =
⊕
Zn(X;R) and define BF(X;R) similarly. If α ∈ Zn and β ∈ Zm

then dα = dβ = 0 and hence d(α ^ β) = dα ^ β + (−1)nα ^ dβ = 0. Thus
α ^ β ∈ Zn+m, and hence ZF is a homogeneous subring of CF(X;R).

Next, if α ∈ Zn and β ∈ Bm then dα = 0 and β = dγ for some γ ∈ Cm−1(X;R).
Thus

α ^ β = α ^ dγ

= ±((d(α ^ γ)− dα ^ γ)

= ±d(α ^ γ).

Thus α ^ β ∈ Bn+m. Similarly β ^ α ∈ Bn+m, and hence BF is a two-sided
homogeneous ideal in ZF. By Lemma 30.9, it follows that HF(X;R) = ZF

/
BF is a

graded ring, with
〈α〉 ^ 〈β〉 := 〈α ^ β〉.
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If f : X → Y then if we denote by HF(f) : HF(Y ;R)→ HF(X;R) the map HF(f) =∑
n≥0H

n(f) then since Hn(f)〈α〉 = 〈f#α〉, it follows Proposition 30.17 that

HF(f) (〈α〉 ^ 〈β〉) = HF(f)〈α〉 ^ HF(f)〈β〉,

and thus HF(f) is a graded ring homomorphism. Moreover the homotopy axiom
for cohomology (Theorem 28.12) shows that if f ' g then (as graded ring homo-
morphisms) HF(f) = HF(g). It follows easily that HF is a contravariant functor as
claimed.

Remark 30.21. We will prove next lecture that if R is commutative then HF(�;R)
is actually a functor

HF(�;R) : hTop→ ComGradedRings.

This is not as easy as it looks (we will prove it via an application of the Acyclic
Models Theorem again!)

Remark 30.22. As in Remark 30.16, we can view the cup product as being a mul-
tiplication

HF(X;R)⊗HF(X;R)→ HF(X;R).

This will also be important next lecture.
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LECTURE 31

Diagonal approximations and the cross
product

The goal of today’s lecture is to prove that the cohomology ring is graded commuta-
tive whenever the coefficient ring is commutative.

Theorem 31.1. Let R be a commutative ring and let X be a topological space. Then

〈α〉 ^ 〈β〉 = (−1)mn〈β〉 ^ 〈α〉, ∀ 〈α〉 ∈ Hn(X;R), 〈β〉 ∈ Hm(X;R). (31.1)

Thus when R is commutative, the functor HF(�;R) takes values in ComGradedRings:

HF(�;R) : hTop→ ComGradedRings.

This will take us some time. We begin with a general definition, which we have
already met in a different guise before.

Definition 31.2. Let (C•, ∂) be a non-negative chain complex. An augmentation
of (C•, ∂) is a surjective homomorphism

ζ : C0 → Z

such that the composition ζ ◦ ∂ : C1 → C0 → Z is identically zero. We call (C•, ∂, ζ)
an augmented chain complex.

A chain complex that admits an augmentation necessarily has a non-zero homol-
ogy group H0(C•). Indeed, let Z̃• denote the chain complex with all groups zero,
apart from the zeroth group, which is Z:

. . . 0→ 0→ 0→ Z
in degree 0

→ 0→ 0→ 0→ . . .

We can regard an augmentation as a surjective chain map ζ : C• → Z̃•. Thus we
get an induced map in homology H0(ζ) : H0(C•) → Z = H0(Z̃•), which is again
surjective.

An augmentation allows one to form the reduced chain complex C̃•, where
C̃n = Cn for n ≥ 1, and C̃0 = ker ζ.

Lemma 31.3. The homology groups of the reduced complex satisfy

Hn(C•) ∼=


Hn(C̃•), n ≥ 1,

H0(C̃•)⊕ Z, n = 0

0, n ≤ −1.
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Proof. We have an exact sequence 0 → C̃0 → C0 → Z → 0. Since Z is free this
sequence splits, and hence C0

∼= C̃0 ⊕ Z. It follows that Zn(C•) = Zn(C̃•) for n 6= 0,
Z0(C•) ∼= Z0(C̃•)⊕ Z, and Bn(C•) = Bn(C̃•) for all n ∈ Z.

We have already met one example of an augmented chain complex many times.

Example 31.4. Let X be a non-empty topological space, and let ζX : C0(X) → Z
be the map defined by

ζX(x) = 1, ∀x ∈ X,

and then extended by linearity. Then (C•(X), ζX) is an augmented chain complex,
and the homology of the reduced complex is the reduced homology of X, cf. Remark
12.24.

If (C•, ∂, ζ) and (C ′•, ∂
′, ζ ′) are two augmented chain complexes, we say that a

chain map f : C• → C ′• is augmentation-preserving if there is a commutative
diagram:

C0 Z

C ′0 Z

ζ

f 1

ζ′

Equivalently, this means

H0(ζ ′) ◦H0(f) = H0(ζ) : H0(C•)→ Z.

Augmented chain complexes define a category AugComp. Let us now present a version
of the Acyclic Models Theorem for augmented complexes. We will denote a functor

T̂• : C→ AugComp

as a pair T̂• = (T•, ζT ), where T• : C → Comp is a non-negative complex valued
functor, and ζT (C) : T0(C) → Z is an augmentation of the complex T•(C) for each
C ∈ obj(C). We say an object C is totally T̂•-acyclic if Hn(T̃•(C)) = 0 for all
n ≥ 0, where T̃•(C) is the reduced complex associated to the augmentation ζT (C).
Equivalently, Hn(T•(C)) = 0 for all n 6= 0, and H0(T•(C)) = Z.

Theorem 31.5 (The Augmented Acyclic Models Theorem). Let C be a category
with models M. Assume that Ŝ•, T̂• : C→ AugComp are two functors. Assume that
for all n ≥ 0, Tn is free with basis contained inM. Assume that each model M ∈M
is totally Ŝ•-acyclic. Then there exists a natural augmentation preserving chain map
Φ: T• → S•. Moreover any two such natural augmentation-preserving chain maps
are naturally chain homotopic.

The difference between Theorem 31.5 and the non-augmented one (Theorem 23.8)
is that this time we do not need to start with a natural transformation Θ: H0 ◦T• →
H0 ◦ S•. (The price to pay for this is, of course, that this version only works for
augmented complexes.)
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Corollary 31.6. If instead we assume that for all n ≥ 0, both Sn and Tn are free
with basis contained in M, and that each model M ∈ M is both totally Ŝ•-acyclic
and totally T̂• acyclic, then every augmentation preserving natural chain map is a
natural chain equivalence.

Proof. Go back to the proof of the standard Acyclic Models Theorem 23.8, and
replace every instance of T0 → H0 ◦ T• → 0 and S0 → H0 ◦ S• → 0 with the
augmentations, so Z plays the role of H0 and the identity map Z→ Z plays the role
of Θ: H0 ◦ T• → H0 ◦ S•. Explicitly, this means that our goal is to construct natural
transformations Φn : Tn → Sn such that the following diagram commutes.

. . . T2 T1 T0 Z 0

. . . S2 S1 S0 Z 0

∂ ∂

Φ2

∂

Φ1

ζT

Φ0 id

∂′ ∂′ ∂′ ζS

But now an inspection of the proof of Theorem 23.8 show that it goes through word
for word in this new setting. Indeed, the only properties we used of H0 ◦ T• and

H0 ◦S• was that S1(M)→ S0(M)
ζS(M)−−−−→ Z→ 0 should be exact for every model M ,

which follows from the fact that every model is totally Ŝ•-acyclic.
Thus the standard Acyclic Models Theorem provides us with such a Φ: T• → S•,

which moreover is unique up to natural chain homotopy. Finally, the fact that the
initial square commutes:

T0 Z

S0 Z

Φ0 id

tells us that Φ is augmentation-preserving. This completes the proof.

Remark 31.7. We can use Corollary 31.6 to give a quicker proof of the Eilenberg-
Zilber Theorem 27.6. Indeed, we consider augmentations

ζX,Y : C0(X × Y )→ Z, ζX,Y (x, y) = 1, ∀ (x, y) ∈ X × Y,

and

ζ ′X,Y : C0(X)⊗ C0(Y )→ Z, ζ ′X,Y (x⊗ y) = 1, ∀ (x, y) ∈ X × Y. (31.2)

Then by assumption, an Eilenberg-Zilber morphism Ω: C•(X×Y )→ C•(X)⊗C•(Y )
commutes with these augmentations. This means that the extra work we did con-
structing the Θ in the proof of Theorem 27.6 (the content of this was Lemma 27.7)
was unnecessary1.

What relevance does this have to the problem at hand? Here is another definition.

1Nevertheless, I thought it was mean to “remind” you of the Acyclic Models Theorem, which most of
you have probably forgotten over the winter vacation by immediately starting off with a generalisation.
Also, Lemma 27.7 will be helpful in the proof of Theorem 32.1 next lecture.
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Definition 31.8. A diagonal approximation D is a natural chain map C•(X)→
C•(X)⊗ C•(X) that satisfies

D0(x) = x⊗ x, ∀x ∈ X,

The reason for the name is the following: if Ω: C•(X ×X)→ C•(X)⊗ C•(X) is
an Eilenberg-Zilber morphism and δ : X → X×X is the diagonal map δ(x) = (x, x),
then

Ω ◦ δ# : C•(X)→ C•(X)⊗ C•(X)

is a diagonal approximation. Moreover, an application of the Augmented Acyclic
Models Theorem shows that this is the only diagonal approximation (up to chain
homotopy).

Theorem 31.9. Any two diagonal approximations are naturally chain homotopic,
and hence in particular induce the same homomorphisms in (co)homology.

Proof. Firstly note that a diagonal approximation D could equivalently be defined
as natural chain map C•(X) → C•(X) ⊗ C•(X) that preserves the augmentations
ζX from Example 31.4 and ζ ′X,X from (31.2). Indeed, it is clear that a diagonal
approximation preserves these augmentations, and conversely by naturality any such
D must satisfy D0(x) = x⊗ x in degree zero (argue as in Remark 27.8.)

Now let M = {∆n | n ≥ 0} denote our standard family of models in Top. We
view the singular chain functor as a functor C• : Top→ AugComp, where we are using
the standard augmentation from Example 31.4. Then C• is free with basis inM (cf.
Example 23.4)

Next, consider the functor S• : Top → Comp given by S•(X) = C•(X) ⊗ C•(X).
We can regard S• as a functor Ŝ• : Top → AugComp using the augmentation ζ ′X,X
from (31.2). Moreover by arguing as at the end of the proof of the Eilenberg-Zilber
Theorem 27.6, we see that each model in M is totally Ŝ•-acyclic.

The result now follows from Theorem 31.5.

It is still probably rather opaque to you why a diagonal approximation is (a)
interesting and (b) of any use whatsoever in proving Theorem 31.1. For, this, note
that if D is a diagonal approximation then applying Hom(�, R) we obtain

Hom(D,R) : Hom(C•(X)⊗ C•(X), R)→ Hom(C•(X), R),

which suddenly “almost” looks like a multiplication on cohomology. Roughly speak-
ing, we will show that cup product is the unique multiplication on cohomology arising
from a diagonal approximation. This uniqueness statement will then quickly imply
our initial statement about graded commutativity, Theorem 31.1.

Let us mimic the construction we did in the proof of the Künneth Theorem for
Cohomology (Theorem 29.16).

Definition 31.10. Let R be a ring. Suppose A• and B• are two non-negative chain
complexes, and let A• = Hom(A•, R) and B• = Hom(B•, R) denote the dual cochain
complexes. Let C• = Hom(A•⊗B•, R) denote the dual cochain complex to A•⊗B•.
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Given n,m ≥ 0, define µ : An ×Bm → Cn+m by setting

µ(α, β)

(
n+m∑
i=0

ai ⊗ bn+m−i

)
:= α(an) · β(bm).

The map µ is clearly bilinear, and hence can be thought of as a map An⊗Bm →
Cn+m. We claim that µ is also well-defined on the level of cohomology. For this,
let us make the following computation. Take any element

∑n+m+1
i=0 ai ⊗ bn+m+1−i in

Cn+m+1 and evaluate:

(dµ(α⊗ β))

(
n+m+1∑
i=0

ai ⊗ bn+m+1−i

)
= µ(α⊗ β)

(
n+m+1∑
i=0

(
∂ai ⊗ bn+m+1−i + (−1)iai ⊗ ∂bn+m+1−i

))
= α(∂an+1) · β(bm) + (−1)nα(an) · β(∂bm+1)

= (dα)(an+1) · β(bm) + (−1)nα(an) · (dβ)(bm+1)

= (µ(dα⊗ β) + (−1)nµ(α⊗ dβ))

(
n+m+1∑
i=0

ai ⊗ bn+m+1−i

)
.

Thus we have shown that

dµ(α⊗ β) = µ(dα⊗ β) + (−1)nµ(α⊗ dβ) (31.3)

This equation tells us that µ is well-defined on the level of cohomology. Indeed,
suppose dα = dβ = 0. Then dµ(α⊗β) = 0, and moreover in this case for any α′ and
β′ one has that

µ((α+ dα′)⊗ (β + dβ′))− µ(α⊗ β) =µ(dα′ ⊗ β) + µ(α⊗ dβ′) + µ(dα′ ⊗ dβ′)︸ ︷︷ ︸
=0

=µ(dα′ ⊗ β) + (−1)nµ(α′ ⊗ dβ︸︷︷︸)
=0

+ (−1)n

(
(−1)nµ(α⊗ dβ′) + µ( dα︸︷︷︸

=0

⊗ β′)

)
= dµ(α′ ⊗ β) + (−1)ndµ(α⊗ β′).

Thus we conclude:

Lemma 31.11. The map

Hn(A•)⊗Hm(B•)→ Hn+m(C•), 〈α〉 ⊗ 〈β〉 7→ 〈µ(α⊗ β)〉

is well-defined.

We will slightly abuse notation and refer to this map also as µ (rather than
Hn+m(µ)) so as to keep the formulae to come not too cumbersome.

We return to the situation at hand.
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Definition 31.12. The cross product is the operation

×Ω := Hom(Ω, R) ◦ µ : CF(X;R)⊗ CF(Y ;R)→ CF(X × Y ;R).

We write this as
α⊗ β 7→ α×Ω β.

By Lemma 31.11 (together with the fact that Ω is a chain map), the cross product
induces a map on cohomology:

× : HF(X;R)⊗HF(Y ;R)→ HF(X × Y ;R), 〈α〉 ⊗ 〈β〉 7→ 〈α×Ω β〉.

In cohomology we drop the subscript Ω on ×Ω, since the Eilenberg-Zilber morphism
is unique up to chain homotopy, and hence different choices of Ω give rise to the
same map on cohomology. Nevertheless, on the cochain level we do need to keep the
subscript Ω, since this does depend on the choice of Ω.

Remark 31.13. In the case R = Z, the induced map in cohomology agrees with the
map η in the Künneth Theorem for Cohomology (Theorem 29.16).

Next lecture, we will explicitly construct a “special” choice of Eilenberg-Zilber
morphism, which we call the Alexander-Whitney choice of Eilenberg-Zilber
morphism and denote it by ΩAW. This particular choice of Eilenberg-Zilber mor-
phism gives rise to the cup product, as the next result shows.

Proposition 31.14. For Ω = ΩAW, the composite

C•(X;R)⊗C•(X;R)
µ−→ Hom(C•(X)⊗C•(X), R)

Hom(ΩAW,R)−−−−−−−−→ C•(X×X;R)
δ#

−−→ C•(X;R)

is precisely the cup product. Thus if α ∈ Cn(X;R) and β ∈ Cm(X;R) then

δ#(α×ΩAW
β) = α ^ β. (31.4)

We will prove Proposition 31.14 next lecture, after we have constructed ΩAW.
There is one more ingredient needed for Theorem 31.1, whose proof is on Problem
Sheet O.

Lemma 31.15. Let (C•, ∂) be a non-negative chain complex. Then the function

twist : C• ⊗ C• → C• ⊗ C•

given by
twist(c⊗ c′) = (−1)nmc′ ⊗ c, c ∈ Cn, c′ ∈ Cm,

is a natural chain equivalence.

Let us finally add commutativity of R as a hypothesis:

Lemma 31.16. If R is commutative then

Hom(twist, R) ◦ µ(α⊗ β) = (−1)nmµ(β ⊗ α), ∀α ∈ Cn(X;R), β ∈ Cm(X;R).
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Proof. Suppose σ ∈ Ci(X) and τ ∈ Cj(X). Both sides clearly vanish on τ ⊗σ unless
i = n and j = m. In this case we compute

Hom(twist, R)µ(α⊗ β)(τ ⊗ σ) = µ(α⊗ β)((−1)nm(σ ⊗ τ))

= (−1)nmα(σ) · β(τ)

(?)
= (−1)nmβ(τ) · α(σ)

= (−1)nmµ(β ⊗ α)(τ ⊗ σ),

where (?) used commutativity of R. Thus both sides agree on a basis of Hom(C•(X)⊗
C•(X), R), and we conclude

Hom(twist, R)µ(α⊗ β) = (−1)nmµ(β ⊗ α).

as desired.

We now have all the ingredients to prove Theorem 31.1 (modulo the construction
of ΩAW and the proof of Proposition 31.14, which we will do next lecture).

Proof of Theorem 31.1. We have already remarked that a diagonal approximation is
given by Ω ◦ δ#. It is then clear from the definition that twist ◦ Ω ◦ δ# is another
diagonal approximation. Thus by Theorem 31.9, the two chain maps are naturally
chain equivalent.

Thus if we apply Hom(�, R), we see that the for any choice of Eilenberg-Zilber
morphism Ω the two compositions

C•(X;R)⊗C•(X;R)
µ−→ Hom(C•(X)⊗C•(X), R)

Hom(Ω,R)−−−−−−→ C•(X×X;R)
δ#

−−→ C•(X;R)

and

C•(X;R)⊗ C•(X;R) Hom(C•(X)⊗ C•(X), R

Hom(C•(X)⊗ C•(X), R) C•(X ×X;R) C•(X;R)

µ

Hom(twist,R)

Hom(Ω,R) δ#

induce the same map in cohomology. Taking Ω = ΩAW and applying Proposition
31.14, we see that the first composition induces

〈α〉 ⊗ 〈β〉 7→ 〈α〉 ^ 〈β〉

in cohomology, whereas using both Proposition 31.14 and Lemma 31.15 shows that
for Ω = ΩAW the second composition induces

〈α〉 ⊗ 〈β〉 7→ (−1)nm〈β〉 ^ 〈α〉, ∀ 〈α〉 ∈ Hn(X;R), 〈β〉 ∈ Hm(X;R)

in cohomology. This completes the proof of Theorem 31.1.
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LECTURE 32

The Alexander-Whitney Formula

We begin this lecture by writing down an explicit formula for an Eilenberg-Zilber
morphism, which we call the Alexander-Whitney choice of Eilenberg-Zilber
morphism, using the front and back face maps from the Lecture 30. In the following,
given a map σ : ∆n → X × Y , we denote by π′ : X × Y → X and π′′ : X × Y → Y
the two projections, and set σ′ = π′ ◦ σ and σ′′ = π′′ ◦ σ, so that σ = (σ′, σ′′).

Theorem 32.1 (Alexander-Whitney Formula). The following formula defines an
Eilenberg-Zilber morphism:

ΩAW(σ) :=
∑
i+j=n

(σ′ ◦ Fi)⊗ (σ′′ ◦Bj),

for σ = (σ′, σ′′) : ∆n → X × Y .

Note that this makes sense: if σ is a singular zero-simplex inX×Y , then σ = (x, y)
for some (x, y) ∈ X × Y , and ΩAW(x, y) = x⊗ y as it should do.

Proof. We will prove the result in three steps. Throughout this proof we will write
Ω instead of ΩAW, since we only consider one Eilenberg-Zilber morphism.

1. As explained above in Remark 31.7, all we need to do is show that this formula
defines a natural chain map. Then the Augmented Acyclic Models Theorem will
immediately tell us it is a natural chain equivalence C•(X × Y ) → C•(X) ⊗ C•(Y ),
and hence an Eilenberg-Zilber morphism.

Next, proving naturality is easy: if f : X → X ′ and g : Y → Y ′ then

Ω ◦ (f, g)#(σ) =
∑
i+j=n

(f ◦ σ′ ◦ Fi)⊗ (g ◦ σ′′ ◦Bj) = (f# ⊗ g#) ◦ Ω(σ).

We can then use naturality to reduce the problem to proving Ω is a chain map
for X = Y = ∆n. This is a similar argument to how we proved that barycentric
subdivision was a chain map in Lecture 13. Indeed, suppose we already know that
Ω: C•(∆

n × ∆n) → C•(∆
n) ⊗ C•(∆n) is a chain map. Let us denote by δ : ∆n →

∆n × ∆n the diagonal. We can also regard as a singular n-simplex in ∆n × ∆n.
For notational clarity, we will write δn (instead of just δ) to indicate the singular
n-simplex, so that δn ∈ Cn(∆n × ∆n). Now if σ : ∆n → X × Y is any singular
n-simplex, we can write

σ = (σ′, σ′′) ◦ δ,

or alternatively
σ = (σ′, σ′′)#(δn). (32.1)
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In the following we add subscripts to each operator to show what they are defined on:
thus ∆X,Y denote the boundary operator1 in C•(X) ⊗ C•(Y ), ∂X×Y the boundary
operator on C•(X × Y ), ΩX,Y is the map defined on X × Y , etc. Assume we prove
that

∆∆n,∆n ◦ Ω∆n,∆n(δn) = Ω∆n,∆n ◦ ∂∆n,∆n(δn) (32.2)

Then we have the following horrendous looking computation:

∆X,Y ◦ ΩX,Y (σ) = ∆X,Y ◦ ΩX,Y ◦ (σ′, σ′′)#(δn), by (32.1),

= ∆X,Y ◦ (σ′# ⊗ σ′′#) ◦ Ω∆n,∆n(δn), by naturality,

= (σ′# ⊗ σ′′#) ◦∆∆n,∆n ◦ Ω∆n,∆n(δn), since (σ′# ⊗ σ′′#) is a chain map,

= (σ′# ⊗ σ′′#) ◦ Ω∆n,∆n ◦ ∂∆n,∆n(δn), by (32.2),

= ΩX,Y ◦ (σ′, σ′′)# ◦ ∂∆n,∆n(δn), by naturality,

= ΩX,Y ◦ ∂X,Y ◦ (σ′, σ′′)#(δn), since (σ′, σ′′)# is a chain map,

= ΩX,Y ◦ ∂X,Y (σ), by (32.1),

which—provided we can verify (32.2)—shows the chain map property:

∆X,Y ◦ ΩX,Y = ΩX,Y ◦ ∂X,Y .

2. We now verify that (32.2). This is a messy, but straightforward. Since ev-
erything now happens on the standard n-simplex, we will ditch the subscripts. Note
that δn is an affine singular n-simplex in the sense of Definition 13.5. We will use
the notation2 [ek0 , . . . , eki ] for the affine singular i-simplex ∆i → ∆n that sends ek
to eki for k = 0, . . . , i. Thus Fi = [e0, . . . , ei] and Bn−i = [ej , . . . , en]. Then, recalling
we use a circumflex ˆ to mean “delete” (cf. Definition 7.7), we have:

∆ ◦ Ω(δn) = ∆

(
n∑
i=0

[e0, . . . , ei]⊗ [ei, . . . , en]

)

=
n∑
i=0

(
∂[e0, . . . , ei]⊗ [ei, . . . , en] + (−1)i[e0, . . . , ei]⊗ ∂[ei, . . . , en]

)
=

n∑
i=0

∑
j≤i

(−1)j [e0, . . . , êj , . . . , ei]⊗ [ei, . . . , en]

+
n∑
i=0

n−i∑
k=0

(−1)i · (−1)k[e0, . . . , ei]⊗ [ei, . . . , êi+k, . . . , en]

=
∑
j<i

(−1)j [e0, . . . , êj , . . . , ei]⊗ [ei, . . . , en]

+
∑
j>i

(−1)j [e0, . . . , ei]⊗ [ei, . . . , êj , . . . , en],

1Here this notation is slightly awkward, since we will be using X = Y = ∆n, and thus we will be
considering the boundary operator ∆∆n,∆n . Oh well, too late to change it now...

2This notation was also used in the solution to Problem G.1.
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where in the last equation we observed that the the terms j = i in the first sum,
which are:

n∑
i=1

(−1)i[e0, . . . , ei−1]⊗ [ei, . . . , en]

cancelled with the term j = i in the second sum, which are:

n−1∑
i=0

(−1)i[e0, . . . , ei]⊗ [ei+1, . . . , en]

3. Going the other way, we have

Ω ◦∆(δn) =
n−1∑
i=0

((∂δn)′ ◦ Fi)⊗ ((∂δn)′′ ◦Bn−i−1).

But (∂δn)′ = π′# ◦ ∂δn, where π′ : ∆n ×∆n → ∆n is projection onto the first factor.

Since π# is a chain map, π′# ◦ ∂δn = ∂π′#δn = ∂`n, where3 `n : ∆n → ∆n is the
identity map (regarded as a singular n-simplex in ∆n). Similarly (∂δn)′′ = ∂`n. Now
by definition

∂`n =
n∑
j=0

(−1)jεj ,

where εj : ∆n−1 → ∆n is the jth face. Thus

Ω ◦∆(δn) =
∑
j

∑
i

(−1)j(ε′j ◦ Fi)⊗ (ε′′j ◦Bn−1−i).

Clearly ε′j = ε′′j = εj , and hence we can write this as

Ω ◦∆(δn) =
∑
i

∑
j

(−1)j(εj ◦ Fi)⊗ (εj ◦Bn−i−1)

=
∑
i>j

(−1)j(Fi+1 ◦ εj)⊗Bn−i +
∑
i<j

(−1)jFi ⊗ (Bn−i ◦ εj−i−1),

where we used part (3) of Lemma 30.12. But unravelling our notation, we have

(Fi+1 ◦ εj)⊗Bn−i = [e0, . . . , êj , . . . , ei]⊗ [ei, . . . , en],

and
Fi ⊗ (Bn−i ◦ εj−i−1) = [e0, . . . , ei]⊗ [ei, . . . , êj , . . . , en],

so that these two terms agree with the formula at the end of Step 2. This completes
the proof.

Let us now prove Proposition 31.14 from Lecture 31, which we restate here:

3As in Lecture 13, we use the symbol `n to denote the identity map, when thought of as a singular
n-simplex in ∆n.

3



Proposition 32.2. For Ω = ΩAW, the composite

C•(X;R)⊗C•(X;R)
µ−→ Hom(C•(X)⊗C•(X), R)

Hom(ΩAW,R)−−−−−−−−→ C•(X×X;R)
δ#

−−→ C•(X;R)

is precisely the cup product. Thus if α ∈ Cn(X;R) and β ∈ Cm(X;R) then

δ#(α×ΩAW
β) = α ^ β.

Proof. Take α ∈ Cn(X;R), β ∈ Cm(X;R), and let σ : ∆n+m → X be a singular
(n+m)-simplex. Then

δ# ◦Hom(ΩAW, R)(α⊗ β)(σ) = (α⊗ β)(ΩAW ◦ δ#(σ)) = (α⊗ β)(ΩAW(δ ◦ σ)).

Now using the Alexander-Whitney Formula,

ΩAW(δ ◦ σ) =

n+m∑
i=0

((δσ)′ ◦ Fi)⊗ ((δσ)′′ ◦Bn+m−i).

But both π′ ◦ δ and π′′ ◦ δ are the identity on X, so this becomes

ΩAW(δ ◦ σ) =
n+m∑
i=0

(σ ◦ Fi)⊗ (σ ◦Bn+m−i).

Since α⊗ β vanishes off Cn(X)⊗ Cm(X), we have

(α⊗ β)(ΩAW(δ ◦ σ)) = (α⊗ β)(σ ◦ Fn)⊗ (σ ◦Bm)

= α(σ ◦ Fn) · β(σ ◦Bm)

= (α ^ β)(σ).

Remark 32.3. Eilenberg-Zilber morphisms are associative. This means that for
any triple of spaces X,Y, Z, the following diagram commutes up to natural chain
homotopy :

C•(X × Y × Z) C•(X)⊗ C•(Y × Z)

C•(X × Y )⊗ C•(Z) C•(X)⊗ C•(Y )⊗ C•(Z)

ΩX,Y×Z

ΩX×Y,Z idX⊗ΩY,Z

ΩX,Y ⊗idZ

This follows from the uniqueness part of Augmented Acyclic Models Theorem. From
this one can deduce that the cross product is always associative on the level of
cohomology (although this already follows from the fact that the cup product is
associative.)

If we take the Alexander-Whitney choice of Eilenberg-Zilber morphisms, then
a stronger statement is true: the diagram genuinely commutes (i.e. not just up
to natural chain homotopy). This follows directly from the formula defining the
Alexander-Whitney choice of the Eilenberg-Zilber morphism, as I invite you to check.
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Remark 32.4. Eilenberg-Zilber morphisms are also commutative. This means that
for any pair of spaces X and Y the following diagram commutes up to natural chain
homotopy:

C•(X × Y ) C•(X)⊗ C•(Y )

C•(Y ×X) C•(Y )⊗ C•(X)

t#X,Y

ΩX,Y

twistX,Y

ΩY,X

Here tX,Y : X × Y → Y ×X is the map (x, y) 7→ (y, x), and twistX,Y is the natural
chain equivalence from Lemma 31.15. This can again be proved via an application
of the Augmented Acyclic Models Theorem.

However there is an important difference compared to the associativity diagram in
the previous remark: Even if one chooses the Alexander-Whitney choice of Eilenberg-
Zilber morphism, this diagram does not have to commute on the cochain level4. This
can again be verified directly from the formula defining the Alexander-Whitney choice
of the Eilenberg-Zilber morphism.

The aim of the rest of this lecture is to show that the cross product is a homo-
morphism of graded rings. We begin with the following trivial result, whose proof I
will leave as an exercise.

Lemma 32.5. Let R and S be rings. Then R⊗S also carries a ring structure, where
the multiplication is defined by

(r ⊗ s) · (r′ ⊗ s′) := rr′ ⊗ ss′, r, r′ ∈ R, , s′ ∈ S.

If instead R and S are graded rings, then R ⊗ S can be given the structure of a
graded ring, where

(R⊗ S)n :=
∑
i+j=n

Ri ⊗ Sj ,

and the multiplication is defined by

(r ⊗ s) · (r′ ⊗ s′) := (−1)mnrr′ ⊗ ss′, r ∈ R, r′ ∈ Rn, s ∈ Sm, s′ ∈ S.

Remark 32.6. The operation (R,S) 7→ R⊗ S is the coproduct (cf. Definition 16.8)
in the category of commutative rings.

Remark 32.7. If R and S are graded rings, then in fact we should use different
notation to denote the two tensor products: R⊗ungraded S and R⊗graded S. Indeed,
these two rings are not the same. For example, if R = Z[P ] and S = Z[Q] then
R ⊗ungraded S ∼= Z[P,Q] (i.e. polynomials over Z with two commuating variables P
and Q), but R⊗graded S consists of all polynomials over Z in two variables P and Q
for which PQ = −QP , as you can easily check. From now on, if R and S are graded
we always implicitly take R⊗ S to mean R⊗graded S.

4Thank you “asdf” for correcting me here! This implies that Theorem 32.8 does not hold on the
cochain level.
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Theorem 32.8. Let X and Y be topological spaces and let R be a commutative
ring. Then the cross product HF(X;R) ⊗graded H

F(Y ;R) → HF(X × Y ;R) is a
homomorphism of graded rings.

Proof. Take cocycles α ∈ Zn(X;R), α′ ∈ Zm(X;R), β ∈ Zp(Y ;R) and β′ ∈
Zq(Y ;R). To simplify the notation we write a := 〈α〉, b = 〈β〉 and define a′, b′

similarly. We want to prove that:

(a× b) ^X×Y
(
a′ × b′

)
= (−1)mp

(
a ^X a′

)
×
(
b ^Y b′

)
,

where we added subscripts to the cup products to indicate ring the multiplication
was occurring.

Consider the following commutative diagram, where δX : X → X × X is the
diagonal map (and similarly for δY and δX×Y ), and tX,Y was defined in Remark
32.4.

X × Y X × (X × Y )× Y

X × (Y ×X)× Y,

(δX ,δY )

δX×Y
(idX ,tX,Y ,idY )

We then compute:

(a× b) ^X×Y
(
a′ × b′

) (†)
= HF(δX×Y )

(
a× b× a′ × b′

)
= HF(δX , δY ) ◦HF(idX × tX,Y × idY )

(
a× b× a′ × b′

)
(♥)
= HF(δX , δY ) ◦

(
a×HF(twistX,Y )(b× a′)× b′

)
(♠)
= (−1)mpHF(δX , δY )

(
a× a′ × b× b′

)
(†)
= (−1)mpHF(δX)

(
a× a′

)
×HF(δY )

(
b× b′

)
= (−1)mp

(
a ^X a′

)
×
(
b ^Y b′

)
,

where both equations labelled (†) used associativity of the cross product (Remark
32.4), (♥) used commutativity of the cross product (Remark 32.4), and (♠) used
Lemma 31.15.

Corollary 32.9. Let X and Y are topological spaces of finite type, and assume that
Hn(Y ) is free abelian for all n ≥ 0. Then the cross product HF(X)⊗gradedH

F(Y )→
HF(X × Y ) is a isomorphism of graded rings.

Proof. We have already noted in Remark 31.13 that for R = Z, the cross product is
the map η from the Künneth Formula in Cohomology (Theorem 29.16):

0→
⊕
i+j=n

H i(X)⊗Hj(Y )
η=×−−−→ Hn(X × Y )→

⊕
k+l=n+1

Tor
(
Hk(X), H l(Y )

)
→ 0.

The assumption that Hn(Y ) is free abelian means that Hn(Y ) is also free abelian
(Corollary 29.9), and hence each Tor group is zero on the right-hand side by part (1)
of Theorem 25.6.
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Remark 32.10. Using Theorem 32.8, one can give an easier definition of the cross
product that starts from the cup product. Namely, if π′ : X × Y → X and π′′ : X ×
Y → Y are the two projections, then for 〈α〉 ∈ HF(X;R) and 〈β〉 ∈ HF(Y ;R), set

〈α〉 × 〈β〉 := HF(π′)〈α〉 ^ HF(π′′)〈β〉, (32.3)

where the cup product on the right-hand side takes place in the ring HF(X × Y ;R).
To see this, we first claim that

HF(π′′)〈β〉 = 〈νX〉 × 〈β〉, (32.4)

where νX ∈ C0(X;R) is the unit (cf. (30.2)). To prove (32.4), first note that since
νX ∈ H0(X;R) is the image of νx ∈ H0(x;R) under the projection X → {x}, it
suffices to consider the case where X is a point. The case when X is a point is left
as an exercise. Anyway, with (32.4) in hand, (32.3) follows from Theorem 32.8.
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LECTURE 33

Fibre bundles

In this lecture we define fibre bundles. Next lecture we will state and prove the
Leray-Hirsch Theorem, which gives conditions on when the cohomology of a fibre
bundle looks like the cohomology of a trivial (product) bundle.

Definition 33.1. Let p : E → X be a continuous map between two topological spaces
E and X, and let F be a non-empty topological space. We say that p : E → X (or
sometimes just “p”) is a fibre bundle over X with fibre F if for every x ∈ X, there
exists a neighbourhood U ⊂ X of x and a homeomorphism h : p−1(U)→ U ×F such
that the following diagram commutes:

p−1(U) U × F

U

h

p π′

where π′ : U × F → U denotes the projection onto the first factor. It is often conve-
nient to denote by Ex := p−1(x). Thus Ex ∼= F for all x ∈ X. We call X the base
space and E is called the total space. One calls h a local trivialisation of the
fibre bundle p. We often write F → E

p−→ X to indicate that p is a fibration with
fibre F .

One can alternatively define fibre bundles via open covers: a map p : E → X is
a fibre bundle with fibre F if and only if there exists an open covering {Uλ | λ ∈ Λ}
such that for each λ ∈ Λ there is a homeomorphism hλ : p−1(Uλ)→ Uλ×F such that
π′ ◦ hλ = p|p−1(Uλ). We call {Uλ} a trivialising cover of X.

A fibre bundle p : E → X is necessarily an open map (since projections of products
are open maps), and thus X carries the quotient topology determined by p.

Example 33.2. It F and X are any two topological spaces then π′ : X × F → X is
obviously a fibre bundle (where π′ denotes the first projection). We call X × F a
trivial bundle. Similarly if E is any fibre bundle such that E ∼= X × F (that is,
the homeomorphism h from Definition 33.1 can be chosen to be defined on the entire
space E) then we say that E is a trivial bundle. Thus for instance F × X → X is
also a trivial bundle.

Trivial bundles may seem pointless, but they are more common than one would
think. We shall see next lecture that any fibre bundle over a contractible cell complex
is automatically a trivial bundle.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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Example 33.3. The map exp: R→ S1 by

exp(s) := e2πis

from Definition 5.1 is a fibre bundle over S1 with fibre Z.

Generalising this, we have the following definition, which you may have seen
previously in your point-set topology class.

Definition 33.4. Let p : E → X be a fibre bundle such that F carries the discrete
topology. Then we call p a covering space.

Remark 33.5. In fact, covering spaces can be defined slightly more generally. Let
us a say a surjective continuous map p : Z → X is a covering space if for every
x ∈ X, there exists an open neighbourhood U ⊂ X of x such that p−1(U) is a union
of disjoint open sets in Z, each of which is mapped homeomorphically onto U by p.
With this definition, a covering space is not necessarily a fibre bundle, since if X is
not path-connected then the sets p−1(x) and p−1(y) need not be homeomorphic if
x and y belong to different path components. However if p : Z → X is a covering
space and X ′ is any path component of X, then setting E := p−1(X ′) one has that
p|E : E → X ′ is a fibre bundle.

Here are some other examples of fibre bundles.

Definition 33.6. Let Rn → E
p−→ X be a fibre bundle. We say that p is a (real)

vector bundle if the following two additional conditions hold:

1. Each fibre Ex carries the structure of an n-dimensional real vector space.

2. There is an trivialising cover {Uλ} of X such that the corresponding local
trivialisations hλ : p−1(Uλ) → Uλ × Rn have the property that hλ|Ex : Ex →
{x} × Rn is a vector space isomorphism1 for each x ∈ Uλ.

As an example (for those of you familiar with differential geometry), the tangent
bundle of any smooth manifold is a real vector bundle. The notion of a complex
vector bundle can be defined analogously. Starting from vector bundles, one can
define topological K-theory, which is a generalised cohomology theory (cf. Remark
7 after Definition 21.9), but that’s a different course. . .

Continuing our list of examples, we now consider a famous class of fibre bundles
over a sphere. Let us temporarily denote by F either the real numbers R, or the
complex numbers C, or the quaternions H. For m = 1, 2 or 4, we can view the sphere
Sm(n+1)−1 as a subset of Fn+1:

Sm(n+1)−1 =

{
(x0, x1, . . . , xn) | xi ∈ F and

n∑
i=0

|xi|2 = 1

}
.

We set FPn =
(
Fn+1 \ {0}

)/
∼, where

(x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn) ⇔ ∃µ ∈ F\{0} such that xi = µyi, ∀ i = 0, . . . , n.

1That is, an isomorphism in the category of vector spaces.
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There is a continuous function p : Sm(n+1)−1 → FPn that sends a tuple (xi) to its
equivalence class (for F = R or F = C this agrees with our normal definition, cf
Example 18.8 and Example 18.9.) On Problem Sheet O, you will prove:

Proposition 33.7. For F = R,C, or H and m = 1, 2 or 4 respectively,

Sm−1 → Sm(n+1)−1 p−→ FPn

is a fibre bundle.

We call these fibre bundles Hopf fibrations.

Definition 33.8. Let p : E → X be a continuous surjective map (not necessarily
a fibre bundle). Let U ⊂ X be open. A local section s : U → E is a continuous
function such that p ◦ s = ι, where ι : U ↪→ X is the inclusion. If x ∈ X has a
neighbourhood U and a local section s of p on U , we say that s is a local section
at x.

If p : E → X is a fibre bundle then for any x ∈ X, a local section exists. Indeed,
if U ⊂ X is an open set containing x and h : p−1(U)→ U ×F is a local trivialisation,
then if z ∈ F is any point,

U
ιz−→ U × F h−1

−−→ p−1(U)

is a local section defined on U , where iz(x) := (x, z).

Definition 33.9. Let G be a topological group (i.e. a topological space with a group
structure, such that the multiplication and inverse maps are continuous). Let H ⊆ G
be a closed subgroup, and consider the quotient space2 G/H (whose elements are the
left cosets gH for g ∈ H), equipped with the quotient topology p : G → G/H. We
call G/H a homogeneous space.

There is a left action of G on G/H given by g · (g′H) := (gg′)H, and the map p
is equivariant in the sense that

p(gg′) = g · p(g′), ∀ g, g′ ∈ G. (33.1)

We denote by e ∈ G/H the coset H.

Lemma 33.10. Suppose p : G→ G/H is a homogeneous space. If p has local section
s at e, then p has a local section at every point of G/H.

Proof. Let U ⊆ G/H be an open set containing e and s : U → G a local section on
U . Given x := gH ∈ G/H, the set g · U is open in G/H and contains x, and the
function s′ : g · U → G defined by

s′(gg′H) := gs(g′H), g′H ∈ U

is a continuous map and by (33.1) one has

p ◦ s(gg′H) = p(gs(g′H)) = gp(s(g′H)) = gg′H.

2In general this is not a group—H need not be a normal subgroup.
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We can use this as a way to construct fibre bundles.

Proposition 33.11. Let G be a topological group at let K ⊆ H ⊆ G be closed
subgroups. Let p : G → G/H and p′ : G/K → G/H denote the two quotient maps.
Assume that p : G→ G/H has a local section at e. Then

H/K → G/K
p′−→ G/H

is a fibre bundle.

Proof. Let x ∈ G/H. By Lemma 33.10, there exists an open set U ⊆ G/H containing
x and a local section s : U → G of p. Define

f : U ×H/K → G/K, f(gH, hK) := s(gH)hK.

for g ∈ G, h ∈ H and gH ∈ U . Then p′f(gH, hK) = gH and so f(gH, hK) ∈
(p′)−1(U). Now define

η : (p′)−1(U)→ U ×H/K, η(gK) :=
(
gH, s(gH)−1gK

)
.

Both f and η are continuous, and one easily checks they invert each other. Thus in
particular η is a homeomorphism. Since x was arbitrary, this completes the proof.

On Problem Sheet O there are several applications of Proposition 33.11 for you
to investigate.

Let us now make fibre bundles into a category.

Definition 33.12. Let F → E
p−→ X and F ′ → E′

p′−→ X ′ be fibre bundles. A
morphism from p to p′ is a pair (f, ϕ) of continuous maps, where f : X → X ′ and
ϕ : E → E′ are such that the following diagram commutes:

E E′

X X ′

ϕ

p p′

f

Thus ϕ maps fibres of p to fibres of p′, i.e. for any x ∈ X, ϕ induces a map
F ∼= p−1(x)→ F ′ ∼= (p′)−1(f(x)).

It is easy to check this defines the category Bun of fibre bundles. If we fix a
topological space X then there is a full subcateogory BunX of fibre bundles over X
whose objects are bundles over X and whose morphisms are pairs (idX , ϕ).

The following definition is arguably more important (as far as algebraic topology
is concerned). We will only briefly cover it here—the study of fibrations will be taken
up again in Lecture 45.

Definition 33.13. Let p : E → X be a continuous map between two topological
spaces. Let W be a topological space. We say that p has the homotopy lifting
property with respect to W if for any homotopy ft : W → X (for t ∈ [0, 1]) and
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any continuous map g0 : W → E such that p ◦ g0 = f0, there exists a homotopy
gt : W → E such that p ◦ gt = ft:

E

W X

p
g0

f0

⇒

E

W X

p
gt

ft

The homotopy gt is called a covering homotopy of ft.

Example 33.14. It follows from Proposition 5.2 that exp: R→ S1 has the covering
homotopy property with respect to any compact convex subset of X ⊂ Rn. Indeed, if
X ⊂ Rn is compact convex, then so is X× I. Now given ft : X → S1 and g0 : X → R
such that exp ◦g0 = f0, Proposition 5.2 gives the existence of a unique continuous
map g : X × I → R such that exp ◦g(x, t) = ft(x). Setting gt(x) := g(x, t) gives the
desired homotopy.

Definition 33.15. If p : E → X has the homotopy lifting property with respect to
any topological space W , then p is called a fibration. If p has the homotopy lifting
property with respect to any cell complex W then p is called a weak fibration.

Definition 33.16. Let X be a topological space and let {Uλ | λ ∈ Λ} be an open
cover of X. We say that {Uλ} is locally finite if for any x ∈ X there exists an open
neighbourhood V such that

{λ ∈ Λ | Uλ ∩ V 6= ∅}

is finite. We say that a topological space X is paracompact if every open cover
admits a locally finite refinement.

Any cell complex is paracompact. The next important theorem relates (weak)
fibrations to fibre bundles. We will prove (half of) it when we study fibrations in
Lecture 45.

Theorem 33.17. Let F → E
p−→ X be a fibre bundle. Then p is a weak fibration. If

X is paracompact then p is a fibration.

Remark 33.18. A fibre bundle with discrete fibre (i.e. a covering space) satisfies a
stronger version of the homotopy lifting property: given ft : W → X and a lift g0 of
f0, there exists a unique lift gt of ft. This uniqueness is the main difference between
the theory of covering spaces and the general theory of fibre bundles.

We need a bit more algebra before we can get state the main result on the coho-
mology of fibre bundles (the Leray-Hirsch Theorem), which will take us the rest of
the lecture.

Definition 33.19. Let R be a ring. A left R-module M is an additive abelian
group having a scalar multiplication R ×M → M , denoted by (r,m) 7→ rm such
that for all x, y ∈M and r, s ∈ R, one has:
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1. r(x+ y) = rx+ ry.

2. (r + s)x = rx+ sx.

3. rs(x) = r(sx).

4. 1Rx = x.

If M and N are left R-modules, a R-module homomorphism f : M → N is a function
such that for all r ∈ R and x, y ∈M , one has:

1. f(x+ y) = f(x) + f(y),

2. f(rx) = rf(x).

In this way modules over R form a category RMod.

Example 33.20. If R = Z then ZMod is just the familiar category Ab.

There is an analogous notion of a free module.

Definition 33.21. Let R be a ring and let M be a left R-module. A set B ⊂
M is called a generating set if every element of M can be written as a finite
sum of elements of B multiplied by elements of R. A subset B is called linearly
independent if for any given distinct elements b1, b2, . . . , bn of B, the only solution
to

r1b1 + r2b2 + · · ·+ rnbn = 0M

is r1 = r2 = · · · = rn = 0R. A subset B of M is called a basis if it is both a
generating set and linearly independent. We say that M is free if it admits a basis.

Example 33.22. If R is a field then any R-vector space V is a free left R-module.

In an analogous way one can speak of right R-modules:

Definition 33.23. Let R be a ring. A right R-module M is an additive abelian
group having a scalar multiplication R ×M → M , denoted by (r,m) 7→ mr such
that for all x, y ∈M and r, s ∈ R, one has:

1. (x+ y)r = xr + yr.

2. x(r + s) = xr + xs.

3. x(rs) = (xr)s.

4. x1R = x.

If M and N are right R-modules, a R-module homomorphism f : M → N is a
function such that for all r ∈ R and x, y ∈M , one has:

1. f(x+ y) = f(x) + f(y),

2. f(xr) = f(x)r.

In this way right R-modules form a category ModR.
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Definition 33.24. Let R,S be rings. An (R,S)-bimodule M over R is a module
which is simultaneously a left R-module and a right S-module and for which the two
scalar multiplications satisfy

r(xs) = (rx)s, ∀x ∈M, r ∈ R, s ∈ S.

Thus for an (R,S)-bimodule one can unambiguously write rxs without parentheses.

Definition 33.25. Let R be a ring, and let M be a right R-module and let N be a
left R-module. We define the tensor product over R of M and N , written M⊗RN
to be the quotient of M ⊗N by all relations of the form (xr, y) = (x, ry) for r ∈ R,
x ∈M and y ∈ N .

If M is a right R-module then one can show that M ⊗R � : RMod → Ab is a
functor, and similarly �⊗RN : ModR → Ab is a functor for each fixed left R-module
N . If M is an (R,S)-bimodule then M ⊗S � is actually a functor ModS → RMod.

If R = Z then M ⊗ZN is just the normal tensor product M ⊗N . But in general
M ⊗R N really is quotient of M ⊗N . For example, if R = Q(

√
2) then R⊗R R = R

but R⊗R is a four-dimensional vector space over Q.

Suppose now for simplicity that R is commutative. Then left R-modules and
right R-modules and (R,R)-bimodules are the same thing, and we just call them all
“R-modules”. From now on we will only talk about the commutative case, since we
are only interested in the cohomology ring of a topological space, and as we have
seen, this is most interesting when the coefficient ring is commutative, since then the
cohomology ring is a commutative graded ring.

Indeed, if R is a commutative ring and X is a topological space, then we can view
the cohomology ring HF(X;R) as an R-module. This means that given two topolog-
ical spaces, we can take the tensor product HF(X;R)⊗RHF(Y ;R), which in general
is not the same as the normal tensor product HF(X;R) ⊗HF(Y ;R). Nevertheless,
the analogue of Theorem 32.8 holds: the cross product defines a (graded) R-module
homomorphism

HF(X;R)⊗R HF(Y ;R)
×−→ HF(X × Y ;R). (33.2)

One can then repeat the arguments from the last lecture to show that (33.2) is a
homomorphism of graded rings.

The aim of the rest of this lecture is to prove a result analogous to Corollary
32.9. Unfortunately this is quite a bit harder than the (two line) proof of Corollary
32.9—the reason being that the proof we gave of Corollary 32.9 used the Künneth
Theorem for Cohomology (Theorem 29.16), and that theorem was proved only for
R = Z.

Theorem 33.26. Let X and Y be topological spaces and let R be a commutative
ring. Assume that Hn(Y ;R) is a finitely generated free R-module for all n ≥ 0. Then
the cross product (33.2) is an isomorphism of graded rings.

We will eventually give three (!) different proofs of Theorem 33.26 (two this
lecture, and a third next lecture, cf. Corollary 34.13). The first method only allows
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us to prove a weak version of Theorem 33.26, but it has the advantage of being closer
to methods we understand.

Definition 33.27. A principal ideal domain R is a non-zero commutative ring
with the following two additional properties:

1. If r, s are two non-zero elements of R then the product rs is also non-zero.

2. If I ⊂ R is an ideal then there exists a single element x ∈ I that generates I in
the sense that I = R · x.

Principal ideal domains are a useful class of commutative rings. They share
many properties with the integers: for the instance, the analgoue of the fundamental
theorem for finitely generated abelian groups holds for finitely generated modules
over a principal ideal domain. We however will only need one fact: if R is a principal
ideal domain and M is a free module, then any submodule of M is also free (this
should be compared to the fact that any subgroup of a free abelian group is itself
free.)

Proposition 33.28. Let R be a principal ideal domain and let M be any R-module.
Then there exists a short exact sequence 0→ K → F →M → 0 where K and F are
free R-modules.

Proof. Exactly the same as Proposition 24.12

For principal ideal domains the definition of Tor is almost the same:

Definition 33.29. Suppose R is a commutative ring and M and N are R-modules.
There is a version of Tor, which we denote by TorR1 (M,N), which is defined as

TorR1 (M,N) = ker(f ⊗R idN ),

where 0 → K
f−→ F → M → 0 is a short exact sequence of R-modules and K,F are

free R-modules.

We won’t go into the properties of TorR1 , save to say that if M is a free R-module
then TorR1 (M,N) = TorR1 (N,M) = 0 for any N .

Remark 33.30. The reason for the subscript 1 in TorR1 is because for rings that are
not principal ideal domains, the definition of TorR is more complicated, and there
end up being higher Tor-groups TorRn for n ≥ 2.

For principal ideal domains, the proof we gave of the Künneth Formula for Co-
homology (Theorem 29.16) goes through with almost no changes. This gives us:

Theorem 33.31 (The Cohomology Künneth Formula for Principal Ideal Domains).
Let R be a principal ideal domain. Suppose X and Y are any two topological spaces
of finite type. Then for every n ≥ 0, there is a split short exact sequence

0→
⊕
i+j=n

H i(X;R)⊗RHj(Y ;R)
×−→ Hn(X×Y ;R)→

⊕
k+l=n+1

TorR1
(
Hk(X;R), H l(Y ;R)

)
→ 0.
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Remark 33.32. There is a version of the Künneth Formula for general rings, but it
is much harder: the presence of higher Tor-groups means that one ends up with a
spectral sequence. This is beyond the scope of this course.

Theorem 33.31 immediately allows one to prove Theorem 33.26, if we make the
additional assumption that R is a principal ideal domain and X and Y are both of
finite type. Indeed, the first map in Theorem 33.31 is the cross product (cf. Remark
31.13), and thus if Hn(Y ;R) is free for every n implies that all the relevant TorR1
groups in the Künneth Formula vanishes, and thus⊕

i+j=n

H i(X;R)⊗R Hj(Y ;R)
×−→ Hn(X × Y ;R).

This completes the proof of Theorem 33.26 under the additional assumption that R
is a principal ideal domain and X and Y are both of finite type.

The assumption that X and Y are of finite type is harmless, but restricting to
principal ideal domains can be annoying, so we will now outline a different argument
that avoids this. This argument is quite nice, as it uses uniqueness of Eilenberg-
Steenrod generalised (co)homology theories (the cohomological variant of Theorem
21.12.) In the proof, we will need the relative version of the two products. The
relative cup product is slightly harder, and I will leave this for you on Problem Sheet
O.

Proposition 33.33. Let X be a topological space and let X ′, X ′′ be open subsets of
X. Let R be a ring. The cup product induces a relative product

HF(X,X ′;R)⊗HF(X,X ′′;R)
^−→ HF(X,X ′ ∪X ′′;R). (33.3)

Moreover if i : (X, ∅) ↪→ (X,X ′) is an inclusion then and 〈α〉 ∈ Hm(X;R) and
〈β〉 ∈ Hm(X,X ′;R) then

〈α〉 ^ Hm(i)〈β〉 = Hn+m(i)(〈α〉 ^ 〈β〉), (33.4)

where the left-hand side is the normal cup product in X, and the right-hand side is
the relative cup product HF(X;R)⊗HF(X,X ′;R)

^−→ HF(X,X ′;R).

The relative cross product is much easier (using the known relation between the
cup and cross products, and the fact that we already did3 the relative cup product.)

Definition 33.34. If X ′ ⊆ X and Y ′ ⊆ Y are open subsets then for any ring R
there is a relative cross product

HF(X,X ′;R)⊗R HF(Y, Y ′;R)
×−→ HF(X × Y,X ′ × Y ∪X × Y ′;R).

This is defined in exactly the same way as Remark 32.10: if 〈α〉 ∈ Hn(X,X ′;R)
and 〈β〉 ∈ Hm(Y, Y ′;R), then Hn(π′)〈α〉 ∈ Hn(X × Y,X ′ × Y ;R) and Hm(π′′)〈β〉 ∈
Hm(X × Y,X × Y ′;R), where π′ and π′′ are the two projections. We then use the
relative cup product (33.3) and set

〈α〉 × 〈β〉 := Hn(π′)〈α〉 ^ Hm(π′′)〈β〉 ∈ Hn+m(X × Y,X ′ × Y ∪X × Y ′;R).

3More precisely: we already left as an exercise.
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Proof of Theorem 33.26. We will prove the result in three steps. Let us first assume
that Y is a finite cell complex Y (in this case the hypothesis that H•(Y ;R) is finitely
generated is automatic.)

1. In this first step, we define two generalised cohomology theories with coeffi-
cients in R. We set

Hn(X,X ′) :=
⊕
i

H i(X,X ′;R)⊗R Hn−i(Y ;R)

and
Kn(X,X ′) = Hn(X × Y,X ′ × Y ;R).

Let us check the Eilenberg-Steenrod axioms (we will construct the connecting homo-
morphisms when discussing the long exact sequence axiom):

1. The homotopy axiom: this is clear for both H• and K•.
2. The long exact sequence axiom: This is clear for K•, but less so for H•. Here

are the details. Begin with the long exact sequence in singular cohomology with
coefficients in R:

· · · → Hn(X,X ′;R)→ Hn(X;R)→ Hn(X ′;R)
δ−→ Hn+1(X,X ′;R) . . .

Now fix k ≥ 0 and tensor every term with the free R-module Hk(Y ;R). The
sequence remains exact, since Hk(Y ;R) is just a direct sum of copies of R. Now
to get the desired long exact sequence for H•, we simply add various shifted
sequences of this form together.

3. The excision axiom This is obvious for H•: namely, if X1 and X2 are subspaces
of X such that X = X◦1 ∪X◦2 then Hn(X,X1) ∼= Hn(X2, X1 ∩X2). For K• this
is also clear, since (X1 × Y ) ∪ (X2 × Y ) = X × Y and (X1 × Y ) ∩ (X2 × Y ) =
(X1 ∩X2)× Y .

4. The “dimension” axiom: Both H• and K• are generalised cohomology theories,
and so do not satisfy the dimension axiom, but it is important for us later to
check that they both do the same thing to a point. For this note that if X = {∗}
is a one-point space then Hn(∗) = R⊗R Hn(Y ;R) and Kn(∗) = Hn(Y ;R).

2. We now construct a natural transformation Φ: H• → K•. We take Φ to be the
relative cross product. I leave it up to check that the following diagram commutes:

Hn(X ′) Hn+1(X,X ′)

Kn(X ′) Kn+1(X,X ′)

δ

× ×

δ

and thus Φ is a natural transformation. Moreover Φn(∗) : Hn(∗) → Kn(∗) is an iso-
morphism, since it is just the scalar multiplication map R⊗RHn(Y ;R)→ Hn(Y ;R).
Thus by a slight generalisation4 of Theorem 21.12, we conclude that Φ is an isomor-
phism on any pair (X,X ′), where X is a finite cell complex and X ′ is a subcomplex.

4The only differences are that we are working in cohomology, and that the map Φn(∗) : Hn(∗)→ Kn(∗)
needs to be explicitly checked to be an isomorphism in all degrees—in the setting of Theorem 21.12 this
was automatic, since we were working with actual homology theories.
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3. Suppose now that X and Y are infinite dimensional cell complexes. The same
strategy of proof works, but now we need an upgraded version of Theorem 21.12
that also works for infinite dimensional cell complexes. We will discuss more a more
general version of Theorem 21.12 in Lecture 46, but in this case the only difference in
the infinite dimensional case is that we need to check explicitly that both H• and K•
satisfy the additivity axion from Definition 21.9. This is clear for K•, but less so for
H•, and this is where the assumption that Hn(Y ;R) is (free and) finitely generated
in each degree is used (see (34.1) in the next lecture for more details.)

4. We now complete the proof. As mentioned in Lectures 18 and 21, one can
always “approximate” an arbitrary topological space by a cell complex in such a way
that the singular homology does not change. We will state this precisely in Theorem
46.15. Thus it suffices to prove the theorem when X and Y are cell complexes, and
we already did this in the last step. This completes the proof.
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LECTURE 34

The Leray-Hirsch Theorem

In this lecture we generalise Theorem 33.26 to fibre bundles. This is the famous Leray-
Hirsch Theorem. We begin with the following general result about fibre bundles,
which we will need in the proof.

Definition 34.1. Let F → E
p−→ X be a fibre bundle and let f : Y → X be a

continuous map. Let

Ef := {(y, z) ∈ Y × E | f(y) = p(z)} .

The map pf : Ef → Y given by (y, z) 7→ y makes F → Ef
pf−→ Y a fibre bundle. It

is usually called the pullback bundle. The map ϕ : Ef → E given by ϕ(y, z) = z
makes the following diagram commute:

Ef E

Y X

pf

ϕ

p

f

Theorem 34.2. Let F → E
p−→ X be a fibre bundle. Let Y be a paracompact

Hausdorff space, and let f, g : Y → X be two homotopic maps. Then the two fibre
bundles pf and pg are isomorphic.

Corollary 34.3. Let F → E
p−→ X be a fibre bundle over a contractible paracompact

Hausdorff base space X. Then p is a trivial fibre bundle. That is, there exists a
homeomorphism h : E → X ×F such that p = π′ ◦h, where π′ is the first projection.

The proof of Theorem 34.2 starts with the following lemma.

Lemma 34.4. Any fibre bundle F → E
p−→ I is trivial.

Proof. Since p is locally trivial, for N large enough, p is trivial over each interval
Ii := [i/N, (i+ 1)/N ]. Let hi : Ii × F → p−1(Ii) be a trivialisation. Now set

ηi : F → F, ηi(y) := π′′ ◦ h−1
i ◦ hi−1(y, i/n)

for i ≥ 1 (where π′′ is the second projection.) Then define

η̃i := ηi ◦ · · · ◦ η1

and η̃0 := idF . Finally, define

h : F × I → E, h(y, t) := hi(η̃i(y), t), t ∈ Ii.

By construction, h is continuous, and is our desired trivialisation.
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The same proof shows that if we are given a fibre bundle over U×I, then a collec-
tion of trivialisations over U × Ii can be glued together to give a global trivialisation.
Now let us sketch the proof of the following result.

Proposition 34.5. Let X be paracompact and Hausdorff. Let ı0 and ı1 denote the
two maps X ↪→ X × I given by ıi(x) = (x, i). Suppose F → E

p−→ X × I is a fibre
bundle, and let pi denote the pullback bundle over X associated to ıi. Then p0 and
p1 are isomorphic.

Proof (Sketch). Let {Uλ} be locally finite cover and let N be large enough so that p
is trivial over Uλ× Ii, where as before Ii = [i/N, (i+ 1)/N ]. By the paragraph above
the statement of the proposition, we can construct trivialisations

hλ : Uλ × F × I → E|Uλ×I .

The goal now is to glue all these trivialisations together. The idea is roughly similar
to the one used in Lemma 34.4 above, only now one needs to work a little harder to
ensure the resulting map really is continuous. The trick is to use a partition of unity
subordinate to the locally finite cover {Uλ}. This falls somewhat out of the remit of
this course, and so I will omit the details.

We can now prove Theorem 34.2. The argument is the same as the one used to
prove Theorem 8.9 from Proposition 8.5.

Proof of Theorem 34.2. Let G : f ' g be a homotopy. Then we have a fibre bundle
F → E

pG−−→→ Y × I. The fibre bundles pf and pg are the pullback bundles of pG
under the two maps ı0 and ı1 respectively. Thus the result follows from Proposition
34.5.

Let us now get started on the Leray-Hirsch Theorem. For this we need to intro-
duce some notation. Let F → E

p−→ X denote a fibre bundle, and let R denote a
ring. Given x ∈ X we denote by ıx : Ex ↪→ E the inclusion of the fibre.

Definition 34.6. A cohomology extension of the fibre is a homomorphism
ξ : H•(F ;R)→ H•(E;R) such that for every x ∈ X and n ≥ 0, the composition

Hn(F ;R)
ξ−→ Hn(E;R)

Hn(ıx)−−−−→ Hn(Ex;R)

is an isomorphism.

Theorem 34.7 (The Leray-Hirsch Theorem). Let F → E
p−→ X be a fibre bundle

and let R be a commutative ring. Assume that Hn(F ;R) is a finitely generated free
R-module for all n ≥ 0, and that a cohomology extension ξ of the fibre exists. Then
the map

L : HF(X;R)⊗R HF(F ;R)→ HF(E;R)

given by
L : 〈α〉 ⊗ 〈β〉 7→ HF(p)〈α〉 ^ ξ〈β〉

is an isomorphism.
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Remark 34.8. The assumption that a cohomology extension exists is a necessary one.
Indeed, consider the Hopf fibration S1 → S3 → S2 and take R = Z. Then Hn(S1) is
finitely generated and free for all n ≥ 0, but HF(S2) ⊗HF(S1) is not isomorphic to
HF(S3). Thus by the Leray-Hirsch Theorem, no cohomology extension can exist.

Remark 34.9. Theorem 34.7 is not asserting that L is an isomorphism of rings, and
indeed this is not always the case.

The Leray-Hirsch Theorem is only useful if a cohomology extension of the fibre
exists. In the next lecture we will show that such an extension always exists when p
is an orientable sphere bundle.

We will need the following preliminary result for the proof of the Leray-Hirsch
Theorem.

Lemma 34.10. Let p : E → X be a fibration. Assume X ′ ⊂ X is a subspace which
X strongly deformation retracts onto, in the sense that there exists a homotopy
ft : X → X such that

f0 = idX , f1(X) ⊂ X ′, ft(X
′) ⊂ X ′, ∀ t ∈ I.

Then the inclusion ı : p−1(X ′) ↪→ E is a homotopy equivalence.

Proof. By the homotopy lifting property with respect to E, there exists a homotopy
gt : E → E such that g0 = idE and such that ft ◦ p = p ◦ gt for each t ∈ [0, 1], as the
following picture indicates:

E

E X X

pidE

p f0

⇒

E

E X X

p
gt

p ft

We claim that g1 is a homotopy inverse to ı. Indeed, going in one direction we have
ı ◦ g1 = g1 ' idE . Going in the other direction, since gt(p

−1(X ′)) ⊆ p−1(X ′) for all
t ∈ I, we see that g1|p−1(X′) ' idp−1(X′) (as maps p−1(X ′)→ p−1(X ′)), and thus also
g1 ◦ ı ' idp−1(X′).

We now move onto the proof of Theorem 34.7. We will be completely rigorous for
the case when X is a finite dimensional cell complex, and then somewhat sketchier
for the general case.

Proof of Theorem 34.7. We begin with more notation. Given Y ⊆ X, denote by
EY := p−1(Y ). We denote by ξY the composite

H•(F ;R)
ξ−→ H•(E;R)

H•(ıY )−−−−→ H•(EY ;R),

where ıY : EY ↪→ E is the inclusion. Abbreviate by M the graded free module
HF(F ;R). Set

LY : HF(Y ;R)⊗RM → HF(EY ;R)
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the map defined by
LY : 〈α〉 ⊗ 〈β〉 7→ HF(p)〈α〉 ^ ξY 〈β〉

Thus our goal is to show that for Y = X, the map LX is an isomorphism. We will
prove the theorem in four steps.

1. We first prove the result in the special case where X is paracompact and
pointed contractible1. In this case, by Corollary 34.3, we may assume that E =
X × F , and moreover by Lemma 34.10 there exists x ∈ X such that the inclusion
ıx : Ex ∼= F ↪→ E is a homotopy equivalence. Thus H•(ıx) is an isomorphism. Since
H•(ıx)◦ξ is an isomorphism by assumption, it follows that ξ : H•(F ;R)→ H•(E;R)
is also an isomorphism. We then have the following commutative diagram:

HF(X;R)⊗HF(F ;R) HF(E;R)

HF(F ;R) HF(E;R)

L

∼= ∼=

ξ

The left-hand vertical map is an isomorphism since HF(X;R) ∼= R as X is con-
tractible, and so the cup product reduces to scalar multiplication mapR⊗RHn(F ;R)→
Hn(F ;R). Thus L is an isomorphism.

2. We now prove the theorem forX a finite dimensional cell complex, by inducting
on their dimension. If X is a point then the claim follows from Step (1). Suppose
now the theorem holds for any cell complex of dimension n−1, including the (n−1)-
skeleton Xn−1. Let us write Xn = U ∪ V , where U is obtained from Xn by deleting
a single point in each n-cell, and V is the union of the n-cells. We then have a
commutative diagram of Mayer-Vietoris sequences:

HF(Xn;R)⊗RM HF(EXn ;R)

(HF(U ;R)⊗RM)⊕ (HF(V ;R)⊗RM) HF(EU ;R)⊕HF(EV ;R)

HF(U ∩ V ;R)⊗RM HF(EU∩V ;R)

LXn

(LU ,LV )

LU∩V

The left-hand column is the tensor product of the Mayer-Vietoris sequence for (U, V ),
tensored with the free module M . It remains exact, since as we have seen, tensoring
with a free module is an exact functor. We will prove that in Step (3) below that
LU , LV and LU∩V are isomorphisms. Then the Five Lemma (Proposition 11.3) tells
us that LXn is an isomorphism, which thus completes the inductive step.

1That is, X can be contracted to a basepoint by a homotopy that fixes the basepoint. Thanks to O.
Edtmair for simplfying this argument.
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3. Let’s start with LU . We have a commutative diagram:

HF(U ;R)⊗RM HF(EU ;R)

HF(Xn−1;R)⊗RM HF(EXn−1 ;R)

LU

LXn−1

The left-hand vertical map is an isomorphism, since Xn−1 is a strong deformation
retract of U (this is a special case of Proposition 19.8). By Lemma 34.10 (which is
applicable due to Theorem 33.17), EU is homotopy equivalent to EXn , and hence the
right-hand vertical map is also an isomorphism. By induction LXn−1 is an isomor-
phism, and hence so is LU .

Now let’s do the case of LV . By assumption, V =
⊔
Enλ for some n-cells Enλ

(possibly uncountably many). We obtain a commutative diagram

HF(V ;R)⊗RM HF(EV ;R)

(∏
HF(Enλ ;R)

)
⊗RM

∏
HF(EEnλ ;R)

(∏
HF(Enλ ;R)⊗RM

) ∏
HF(EEnλ ;R)

LV

∏
LEn

λ

All the vertical maps are isomorphisms: the two top are isomorphisms due to the
additivity of cohomology. The bottom left is an isomorphism due to the fact that if Q
is a finitely generated free R-module and Nλ are an arbitrary collection of R-modules
then (∏

Nλ

)
⊗R Q ∼=

∏
(Nλ ⊗R Q) (34.1)

It thus suffices to show that LEnλ is an isomorphism, but this follows from Step (1).
Finally, consider LU∩V . By arguing as above, this reduces to considering LU∩Enλ

for a given n-cell Enλ . Such a set U ∩Enλ has as a strong deformation retract a sphere
Sn−1
λ :

HF(U ∩ Enλ ;R)⊗RM HF(EU∩Enλ ;R)

HF(Sn−1
λ ;R)⊗RM HF(ESn−1

λ
;R)

LU∩En
λ

As in Step (2), the two vertical maps are isomorphisms (using Lemma 34.10 again).
But Sn−1

λ is a cell complex of dimension n−1, and hence the bottom horizontal map
is an isomorphism by induction.

4. We have now proved the result for all finite-dimensional cell complexes. Let
us briefly outline how to prove it for an infinite-dimensional cell complex.
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Let X be a cell complex with skeleton filtration (Xn). Then a cohomological ver-
sion of Proposition 20.3 tells us that the inclusion Xn ↪→ X induces an isomorphism
H i(X;R) → H i(Xn;R) for i ≤ n. Similarly if F → E

p−→ X is a fibre bundle then
H i(E;R) ∼= H i(EXn ;R) for i ≤ n. This isn’t hard to prove, but it uses terminology
we haven’t introduced yet, and hence for now we will take it on faith and come back
to justify it when we start homotopy theory towards the end of the course.

From this is is easy to deduce Theorem 34.7 for X an infinite dimensional cell
complex. Fix n ≥ 0, and let Xn denote the n-skeleton of X. Then we have a
commutative diagram

HF(X;R)⊗R HF(F ;R) HF(Xn;R)⊗R HF(F ;R)

HF(E;R) HF(EXn ;R)

L LXn

By assumption the horizontal maps are isomorphisms in degree i ≤ n. The right-
hand vertical map is an isomorphism by Step (3). Thus the left-hand map is an
isomorphism in degree i ≤ n. Since n was arbitrary, the theorem is proved for
infinite dimensional cell complexes.

5. Let us sketch how to extend the proof to arbitrary topological spaces X. Just
like Theorem 33.26 last lecture, this requires us to use a cellular approximation to X.
So assume there exists a cell complex Y and a continuous map f : Y → X such that
f induces an isomorphism on all (co)homology groups (we will construct such a pair
(Y, f) at the end of the course). Let pf : Ef → Y denote the pullback bundle from
Definition 34.1. Define ϕ : Ef → E by ϕ(y, z) = z, so that the following diagram
commutes:

Ef E

Y X

pf

ϕ

p

f

The fact that f induces an isomorphism on all cohomology groups implies that ϕ does
too—this is an immediate corollary of the long exact sequence of homotopy groups
associated to a fibration (Corollary 45.18.) It is easy to see that the cohomology
extension ξ induces one in Ef , and thus F → Ef → Y satisfies the hypotheses of the
theorem. By Step (4), we obtain an isomorphism

L : HF(Y ;R)⊗R HF(F ;R)→ HF(Ef ;R)

A naturality argument gives commutativity of the following diagram:

HF(X;R)⊗R HF(F ;R) HF(Y ;R)⊗R HF(F ;R)

HF(E;R) HF(Ef ;R)

L L

The horizontal maps are isomorphisms by the discussion above. Thus the left-hand
L is also an isomorphism. This completes the proof.
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Remark 34.11. We proved in Theorem 16.22 that homology commutes with colimits,
and we used this in Proposition 18.17 to note that the homology of a cell complex
X is the colimit of the homology of its skeleta Xn. Let us briefly say a few words
about the corresponding situation in cohomology. (This is purely for interest—it has
no relevance to the rest of this lecture!)

When working with cohomology, instead of colimits, we need to take limits2.
Limits are defined analogously to how we defined colimits in Lecture 16, by appro-
priately reversing the arrows. I invite you to guess the correct definition (We will do
this formally in Lecture 39.) This gives us a group lim←−−H

•(Xn;R) (note the arrow
is pointing to the left). One might hope that the H i(X;R) = lim←−−H

i(Xn;R), but
unfortunately in general this isn’t true. This is because limits are less well behaved
than colimits, and are not exact functors from diagrams of abelian groups to dia-
grams of abelian groups. Consequently one needs to worry about the first derived
functor of lim←−−, denoted by R1 lim←−−. Here is a correct statement:

Proposition 34.12. Suppose we are given a family in : Xn → Xn+1 for n ∈ N of
closed inclusions. Let A be an abelian group. Assume in addition that for each n the
space Xn is weakly Hausdorff. Let X =

⋃
nXn, endowed with the colimit topology.

Then there is a natural short exact sequence

0→ R1 lim←−−
n

(
H i−1(Xn;A)

)
→ H i(X;A)→ lim←−−

n

(
H i(Xn;A)

)
→ 0.

Sadly we don’t have time to define the derived functor R1 lim←−− properly, or to
prove Proposition 34.12.

One can view Theorem 33.26 as a special case of the Leray-Hirsch Theorem. Let
us recall the statement:

Corollary 34.13. Let X and Y be topological spaces and let R be a commutative
ring. Assume that Hn(Y ;R) is a finitely generated free R-module for all n ≥ 0. Then
the cross product (33.2) is an isomorphism of graded rings.

Proof. We view X × Y → X as a fibre bundle via the first projection. The second
projection X × Y → Y gives us a cohomology extension of the fibre. Theorem 34.7
is thus applicable, and the result immediately follows.

Let us now discuss a stronger “relative” version of Theorem 34.7, which will also
be useful. For this we need another definition.

Definition 34.14. A fibre-bundle pair, written (F, F ′) → (E,E′)
p−→ X, consists

of a continuous map p : E → X with the property that there exists an open cover
{Uλ} of X and homeomorphisms of pairs

hλ :
(
Uλ × F,Uλ × F ′

)
→
(
p−1(Uλ), p−1(Uλ) ∩ E′

)
such that p|p−1(Uλ) ◦ hλ = π′ for each λ, where as usual π′ is the projection onto the
first factor.

2Yes, this is one example where the terminology is somehow “backwards”. . . Don’t blame me!
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Equivalently, a fibre bundle pair (F, F ′)→ (E,E′)
p−→ X consists of a fibre bundle

F → E
p−→ X together with a subspace E′ ⊆ E and a subspace F ′ ⊆ F such that

F ′ → E′
p|E′−−→ X is itself a fibre bundle, and moreover such that local trivialisations

of p|E′ can be obtained by restricting local trivialisations of p.

Example 34.15. A disk bundle Bn → E
p−→ X is a fibre bundle with fibre a ball

Bn. Let E′ denote the union of the boundary spheres of the fibres and let p′ = p|E′ .
Then Sn−1 → E′

p′−→ X is a sphere bundle (i.e. a fibre bundle with fibre a sphere),
and moreover (E,E′) is a fibre bundle pair since local trivialisations of E restrict to
local trivialisations of E′ (this is because a homeomorphism Bn → Bn restricts to
define a homeomorphism Sn−1 → Sn−1.). We call p′ the boundary sphere bundle
of the disk bundle p.

Remark 34.16. Let Sn → E
p−→ X denote a sphere bundle. Let

Z :=
(

(E × I) tX
)/
∼

where we identify (y, 0) ∈ E× I with p(y). There is a natural map f : Z → X whose
fibre over x ∈ X is Zx = (Ex × I)/(Ex × {0}). This is a cone over a sphere, and

hence Zx ∼= Bn+1. Thus Bn+1 → Z
f−→ X is a disk bundle. Moreover, identifying

Ex ∼= Ex × {1}, we see that (Bn+1, Sn) → (Z,E)
f−→ X is a fibre bundle pair with

f |E = p. Thus any sphere bundle can be seen as the boundary sphere bundle of a
disk bundle.

Definition 34.17. Let (F, F ′) → (E,E′)
p−→ X denote a fibre bundle pair and let

R denote a ring. A cohomology extension of the fibre is again a homomor-
phism ξ : H•(F, F ′;R) → H•(E,E′;R) such that for every x ∈ X and n ≥ 0, the
composition

Hn(F, F ′;R)
ξ−→ Hn(E,E′;R)

Hn(ıx)−−−−→ Hn(Ex, E
′
x;R)

is an isomorphism, where E′x = p−1(x) ∩ E′.

Here is the Relative Leray-Hirsh Theorem. It includes the (absolute) Leray-Hirsch
Theorem 34.7 as a special case (take E′ = F ′ = ∅.) The proof is almost exactly the
same as the absolute case, and I omit the details.

Theorem 34.18 (The Relative Leray-Hirsch Theorem). Let (F, F ′)→ (E,E′)
p−→ X

be a fibre bundle pair and let R be a commutative ring. Assume that Hn(F, F ′;R)
is a finitely generated free R-module for all n ≥ 0, and that a cohomology extension
ξ of the fibre exists. Then the map

L : HF(X;R)⊗R HF(F, F ′;R)→ HF(E,E′;R)

given by
L : 〈α〉 ⊗ 〈β〉 7→ HF(p)〈α〉 ^ ξ〈β〉

is an isomorphism.
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LECTURE 35

The Thom Isomorphism Theorem

There are many important applications of the Leray-Hirsch Theorem 34.7 and its rel-
ative version Theorem 34.18. However since we only have finitely many lectures left,
we will immediately simplify the picture and restrict our attention to disk bundles.

Let (Bn, Sn−1)→ (E,E′)
p−→ X be a fibre bundle pair. Since

H i(Bn, Sn−1;R) ∼=

{
R, i = n,

0, i 6= n,

we see that a cohomology extension ξ of the fibre is the same thing as specifying a
single class t ∈ Hn(E,E′;R):

t := ξ(r∗),

where r∗ ∈ R ∼= Hn(Bn, Sn−1;R) is any generator of R (i.e. any element with a
multiplicative inverse). If R = Z2, then there is only one such element r∗, but for
other rings there may be more (for instance, if R = Z then both 1 and −1 work.) The
class t then has the property that Hn(ıx)(t) is a generator Hn(Ex, E

′
x;R) for every

x ∈ X. Such a class t has a special name (which historically predates the notion of
a cohomology extension of the fibre).

Definition 35.1. Let (Bn, Sn−1) → (E,E′)
p−→ X be a fibre bundle pair and let R

be a commutative ring. A Thom class for p is a cohomology class t ∈ Hn(E,E′;R)
with the property that Hn(ıx)(t) is a generator of Hn(Ex, E

′
x;R) for every x ∈ X.

We then have:

Lemma 35.2. Let (Bn, Sn−1)→ (E,E′)
p−→ X be a fibre bundle pair. A Thom class

exists if and only if there exists a cohomology extension of the fibre.

Proof. We have just seen that a cohomology extension of the fibre determines a Thom
class. Conversely, a choice of Thom class allows us to define a cohomology extension
of the fibre by sending a generator of Hn(Bn, Sn−1;R) to t and then extending by
linearity (and setting ξ to be zero in all other degrees.)

The next result is just a rephrasing of the Relative Leray-Hirsch Theorem 34.18
in this special case.

Theorem 35.3 (The Thom Isomorphism Theorem). Let (Bn, Sn−1)→ (E,E′)
p−→ X

be a fibre bundle pair and let R be a commutative ring. Suppose a Thom class t
exists. Then the map L : H i(X;R)→ H i+n(E,E′;R) given by

L : 〈α〉 7→ H i(p)〈α〉 ^ t

is an isomorphism for all i ≥ 0, and H i(E,E′;R) = 0 for i < n.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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The Thom Isomorphism Theorem 35.3 is completely useless unless one knows
that a Thom class exists. We will now prove that for R = Z2, a Thom class always
exists. Afterwards we discuss the case R = Z, which is a bit more subtle.

Theorem 35.4. Let (Bn, Sn−1) → (E,E′)
p−→ X be a fibre bundle pair. Then for

R = Z2, a Thom class t always exists. Moreover t is unique.

In the course of the proof, we will use the following result about cell complexes.
The proof is not too hard (it is a variation of the argument used in Lecture 19 to
show that cell complexes and their subcomplexes are “nice” pairs). Nevertheless, the
ideas are somewhat tangential to the discussion at hand, and hence we will skip it.

Lemma 35.5. Let X be a path connected cell complex of dimension n. Then X can
be covered by (n+ 1) open paracompact subsets that are contractible in X.

Proof of Theorem 35.4. Just as with our proof of the Leray-Hirsch Theorem 34.7 last
lecture, we will prove the result first when X is contractible, then for bundles where
X is a finite-dimensional cell complex, then when X is an arbitrary cell complex,
and finally the general case. This time round though we will be very sketchy in the
infinite-dimensional case1. It suffices to prove the result when X is path-connected.

1. Suppose E is trivial (which by Corollary 34.3 is the case if X is paracompact
and contractible). For R = Z2, there is a unique generator 〈γ〉 ∈ Hn(Bn, Sn−1;Z2).
Consider now the map of pairs

(Bn, Sn−1)
ıx−→ X × (Bn, Sn−1)

π′′−→ (Bn, Sn−1)

where ıx(y) = (x, y) and π′′ is the second projection. If t := Hn(π′′)〈γ〉 then it is
clear that t is a Thom class, which moreover is unique (t is the image of νX × 〈γ〉
under Theorem 33.26, where νX ∈ H0(X;Z2) is the unit class (30.2).) Let us also
note that by Theorem 33.26 we have that

H i(E,E′;Z2) =
⊕
k+l=i

(
Hk(X;Z2)⊗Z2 H

l(Bn, Sn−1;Z2)
)
,

and thus H i(E,E′;Z2) = 0 for i < n.
2. Now suppose X is the union of two open sets U and V such that all three

of EU = p−1(U) and EV = p−1(V ) and EU∩V = p−1(U ∩ V ) admit a unique Thom
class tU , tV and tU∩V respectively and satisfy

H i(EU , E
′
U ;Z2) = H i(EV , E

′
V ;Z2) = H i(EU∩V , E

′
U∩V ;Z2) = 0, for i < n.

Consider the inclusions:

EU

EU∩V E

EV

′UU

V ′V

1In the exam, I will only expect you to know how to prove this in the finite-dimensional case!
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Then we have a Mayer-Vietoris sequence

H i−1(EU∩V , E
′
U∩V ;Z2)→ H i(E,E′;Z2)→ H i(EU , E

′
U ;Z2)⊕H i(EV , E

′
V ;Z2)→ H i(EU∩V , E

′
U∩V ;Z2)

For i < n the first and third groups are zero, and thus so is the second group:
H i(E,E′;Z2) = 0 for i < n. For i = n the sequence is:

0→ Hn(E,E′;Z2)→ Hn(EU , E
′
U ;Z2)⊕Hn(EV , E

′
V ;Z2)

h−→ Hn(EU∩V , E
′
U∩V ;Z2)

Uniqueness of the Thom classes imply that

Hn(U )(tU ) = Hn(V )(tV ) = tU∩V . (35.1)

The map h is defined by

h(〈α〉, 〈β〉) = Hn(U )〈α〉 −Hn(V )〈β〉,

and thus by (35.1) one has h(tU , tV ) = 0. Thus by exactness, there is a unique
element t ∈ Hn(E,E′;Z2) such that

Hn(′U )(t) = tU , Hn(′V )(t) = tV .

Since tU and tV are Thom classes for EU and EV it follows that t is a Thom class
for X.

3. It thus follows by by induction on m that if E can be written as the union of m
trivial bundles then E itself has a unique Thom class, and moreover H i(E,E′;Z2) = 0
for i < n. Indeed, Step (1) did the case m = 1, and if we assume that the result is
true for ≤ m− 1 and that X = U1 ∪ · · · ∪ Um where E|Ui is trivial for i = 1, . . . ,m,
then we can apply the inductive hypothesis to all three of U1 and U2 ∪ · · · ∪ Um and
(U1 ∩U2)∪ · · · ∪ (U1 ∩Um). Then Step (2) shows that a Thom class exists for E and
that H i(E,E′;Z2) = 0 for i < n.

This implies the theorem is true for X a finite-dimensional cell complex. Indeed,
by Lemma 35.5, if X has dimension n, then we can write X as the union of n + 1
contractible open sets, and thus Corollary 34.3 implies that we can write E as the
union of n+ 1 trivial bundles.

4. Now let us sketch how this extends to an infinite dimensional cell complex X.
If Xk is the kth skeleta, then Ek := EXk admits a Thom class tk. Now consider

(t0, t1, t2, . . . ) ∈
∏
k

Hn(Ek, E
′
k;Z2).

This gives rise to an element t ∈ lim←−−kH
n(Ek, E

′
k;Z2). Moreover sinceHn−1(Ek, E

′
k;Z2) =

0 by the previous step, one also has R1 lim←−−kH
n−1(Ek, E

′
k;Z2) = 0, and thus from

Proposition 34.12 we have Hn(E,E′;Z2) = lim←−−kH
n(Ek, E

′
k;Z2). Thus t is an element

of Hn(E,E′;Z2), and this is our desired Thom class.
Finally, using our by now standard (but as yet, still unjustified!) step of approx-

imating an arbitrary space by a cell complex, the general case follows, just as in the
last step of Theorem 34.7 last lecture.
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Now let us consider the case R = Z. The previous proof goes wrong in exactly
one place—namely, right at the beginning. There is no longer a unique choice of
generator of Hn(Bn, Sn−1) (there are two possible choices). Since the argument
repeatedly used uniqueness, the entire proof breaks down. This leads us to the
concept of orientability.

For this, rather than disk bundles, it is slightly more convenient to talk about
vector bundles. This is for two reasons: firstly, you are all already familiar with an
orientation of a vector space, and secondly, this will be more helpful when we discuss
topological manifolds next lecture.

Suppose Rn → E
p−→ X is a vector bundle (cf. Definition 33.6). Let

E× =
⋃
x

Ex \ 0x,

where 0x ∈ Ex is the zero element of the vector space Ex. Since one also has

H i(Rn,Rn \ 0;R) ∼=

{
R, i = n,

0, i 6= n

(as Rn \ Bn ↪→ Rn \ 0 is a homotopy equivalence), one can define a Thom class in
exactly the same way.

Definition 35.6. Let Rn → E
p−→ X be a vector bundle, and let R be a commutative

ring. A Thom class for p is a cohomology class t ∈ Hn(E,E×;R) with the property
that Hn(ıx)(t) is a generator of Hn(Ex, Ex \ 0x;R) for every x ∈ X.

Theorem 35.7 (The Thom Isomorphism Theorem—vector bundle version). Let

Rn → E
p−→ X be a vector bundle, and let R be a commutative ring. Suppose a

Thom class t exists. Then the map L : H i(X;R)→ H i+n(E,E×;R) given by

L : 〈α〉 7→ H i(p)〈α〉 ^ t

is an isomorphism for all i ≥ 0, and H i(E,E×;R) = 0 for i < n.

The proof of Theorem 35.7 proceeds in exactly the same way as Theorem 35.3,
and we will refer to both results as the “Thom Isomorphism Theorem”. Moreover
the same argument as in Theorem 35.4 gives:

Theorem 35.8. Let Rn → E
p−→ X be a vector bundle. Then for R = Z2, a Thom

class t ∈ Hn(E,E×;Z2) always exists. Moreover t is unique.

Now let us discuss orientability. We begin by choosing a canonical generator of
Hn(Rn,Rn \ 0).

Definition 35.9. In Lecture 7 we defined (cf Definition 7.8) ei to be the standard
basis vector of Rn+1 with a 1 in the (i+ 1)st position and zeroes in all other coordi-
nates. This convention was convenient for simplices, but is rather awkward for linear
algebra. Thus we introduce more notation: let qi ∈ Rn be the standard basis vector
with a 1 in the ith coordinate and zeros in the other coordinates.
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The following lemma is an easy computation whose proof is on Problem Sheet O.

Lemma 35.10. Let n ≥ 1. Let σn : ∆n → Rn denote the unique affine map such that

σn(e0) = −
n∑
i=1

qi, and σn(ei) = qi, i = 1, . . . , n.

Then σn determines a generator 〈σn〉 of Hn(Rn,Rn \ 0) ∼= Z.

Definition 35.11. Let R be an ring. Let γn ∈ Hom(Hn(Rn,Rn \ 0), R) denote
the class determined by γn(〈σn〉) = 1. Then from the Dual Universal Coefficients
Theorem 29.5, γn determines a generator 〈γn〉 of Hn(Rn,Rn \ 0;R) ∼= R. We call it
the canonical generator.

Definition 35.12. Let V be real vector space of dimension n ≥ 1. An orientation
on V is an equivalence class of an ordered bases, where two bases being equivalent if
the transformation matrix taking one to the other has positive determinant.

There are thus two orientations on V , and a choice of orientation allows us to
speak of a positively oriented basis (i.e. one in the chosen equivalence class) and a
negatively oriented basis. We use the convention that (q1, . . . , qn) is a positively
oriented basis of Rn. If V and W are n-dimensional vector spaces equipped with
orientations, then a linear isomorphism f : V → W is orientation preserving if it
sends a positively oriented basis to a positively oriented basis.

Here is a cohomological version of the definition.

Definition 35.13. Fix an ordered basis B = (v1, v2, . . . , vn) of V . Define a linear
map fB : V → Rn by setting f(vi) = qi. Two bases B and B′ are equivalent in the
sense of Definition 35.12 if and only if2 the maps fB and fB′ are homotopic through
maps of pairs (V, V \ 0)→ (Rn,Rn \ 0). The map fB determines an isomorphism

Hn(fB) : Hn(Rn,Rn \ 0)→ Hn(V, V \ 0).

Set 〈γB〉 := Hn(fB)〈γn〉, where 〈γn〉 is the canonical generator from Definition 35.11
for A = Z. We call 〈γB〉 a cohomological orientation of the vector space V .

It follows immediately that B and B′ are equivalent in the sense of Definition 35.12
if and only if 〈γB〉 = 〈γB′〉. (If they are not equivalent, then 〈γB〉 = −〈γB′〉.) Thus
a choice of cohomological orientation is the same thing as the choice of a (normal)
orientation.

Now let us extend this to vector bundles. Suppose Rn → E
p−→ X is a vector

bundle and h : p−1(U) → U × Rn is a vector bundle trivialisation (as in Definition
33.6). We define a cohomology class

〈γU 〉 := Hn(π′′ ◦ h)〈γn〉 ∈ Hn(EU , E
×
U ),

where as always, π′′ : U ×Rn → Rn is the second projection, and E×U =
⋃
x∈U Ex \0x.

Next, set hx := h|Ex : Ex × {x} ∼= Ex → Rn. If we set

〈γx〉 := Hn(hx)〈γn〉,
2Exercise: Why?
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then we have
Hn(ıx)〈γU 〉 = 〈γx〉, ∀x ∈ U,

where ıx : Ex ↪→ E is the inclusion of the fibre. This follows from the obvious
commutativity of the following diagram:

Ex p−1(U) U × Rn

Rn Rn

ıx

hx

h

π′′

id

Thus via h we obtain a cohomological orientation 〈γx〉 of each vector space Ex for
x ∈ U . We call this the cohomological orientation induced by h.

So far this is just notation (we have not yet imposed any conditions on the vec-
tor bundle p). But now suppose k : p−1(V ) → V × Rn is another vector bundle
trivialisation, with U ∩ V 6= ∅. This gives us a class

〈γV 〉 := Hn(π′′ ◦ k)〈γn〉 ∈ Hn(EV , E
×
V )

and
〈γ′x〉 := Hn(kx)〈γn〉 ∈ Hn(Ex, Ex \ 0x).

We would like these classes to be compatible in the sense that the cohomological
orientation induced by h should agree with the cohomological orientation induced by
k on U ∩ V :

〈γx〉 = 〈γ′x〉, ∀x ∈ U ∩ V.

If this is the case we say that the two trivialisations h and k are compatible.

Definition 35.14. An orienting atlas of a vector bundle Rn → E
p−→ X consists of

an open cover {Uλ} of X and vector bundle trivialisations hλ : p−1(Uλ) → Uλ × Rn
such that hλ is compatible with hλ′ whenever Uλ∩Uλ′ 6= ∅. If an orienting atlas exists,
we say the vector bundle p is orientable. An orienting atlas defines a cohomological
orientation 〈γx〉 ∈ Hn(Ex, Ex \ 0x) for every x ∈ X. We call such a choice an
orientation of p. Thus if p is orientable and X is path-connected, there are precisely
two orientations of p.

Not all vector bundles are orientable. Here is an example of one that isn’t.

Example 35.15. Let E be the quotient space of I × R where we identify

(0, s) ∼ (1, 1− s), ∀s ∈ R.

The projection I × R → I factors through ∼ to define a map p : E → S1. Then
R → E

p−→ S1 is a vector bundle called the Möbius bundle. I invite you to prove
that p is not orientable3.

We conclude this lecture by using orientability to give a version of Theorem 35.4
for R = Z.

3Hint: the name should give you a clue!
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Theorem 35.16. Let Rn → E
p−→ X be an oriented vector bundle over a path

connected space X. Then for R = Z, a Thom class t ∈ Hn(E,E×) always exists.

Proof. As already mentioned, the only place where the proof of Theorem 35.4 goes
wrong is in Step (1). But the choice of orientation rectifies this: if we are given
an orienting atlas hλ : p−1(Uλ) → Uλ × Rn then we can define Thom classes tUλ :=
〈γUλ〉 ∈ Hn(EUλ , E

×
Uλ

), and the compatibility condition plays the role that uniqueness
did in the proof of Theorem 35.4.

7



LECTURE 36

Topological manifolds and presheaves

In this lecture we define topological manifolds and pre(co)sheaves.

Definition 36.1. A topological space X is said to be n-dimensional locally Eu-
clidean if every point x ∈ X has an open neighbourhood U which is homeomorphic
to an open subset V of Rn. A homeomorphism ϕ : U → V is called a chart about x.
We call n the dimension of X.

Since Rn is not homeomorphic to Rm (this is the Invariance of Domain Theorem,
cf. Problem I.2), the dimension is well defined. It is often convenient to assume that
a chart ϕ : U → V at x has the property that 0 ∈ V and satisfies ϕ(x) = 0. In this
case we say that ϕ is centred at x. We can of course also assume V = Rn when
needed.

Definition 36.2. A topological space M is called an n-dimensional topological
manifold if:

1. M is Hausdorff.

2. M is n-dimensional locally Euclidean.

3. M is paracompact (cf. Definition 33.16.)

4. M has at most countably many connected components.

Remark 36.3. If a topological manifoldM is compact we will—somewhat illogically—
say that M is a closed topological manifold.

The notion of boundary for a manifold is slightly confusing, because there are
two different concepts which usually do not coincide: the topological boundary and
the manifold boundary. In this course we will only ever use manifolds as defined
above, where (by definition) the manifold boundary is always empty. (So the rest of
this remark is for interest only!)

If M ⊂ Rm is a topological n-dimensional manifold1 then ∂topM (the topological
boundary of M as a subset of Rm, i.e. M \M◦) either satisfies M ∩ ∂M = ∅ (when
n = m) or M = ∂topM (when n < m). This is because the “locally Euclidean”
condition is an open condition.

There is a more general notion of an n-dimensional topological manifold
with boundary, which is a Hausdorff paracompact topological space with countably
many connected components such that every point is either homeomorphic to an open

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
1Any n-dimensional topological manifold can be embedded in R2n+1. Any n-dimensional smooth

topological manifold can be embedded in R2n. These (difficult) results are usually known as the Whitney
Embedding Theorems.
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subset in Rn or an open subset in a half-plane Rn+ := {(q1, . . . , , qn) | q1 ≥ 0}, where
we endow Rn+ with the subspace topology on Rn.

In this case one can define the interior of M , written intM to be those points in
M which have neighbourhoods homeomorphic to an open subset of Rn. The manifold
boundary ∂manM is then M \ intM .

If M is an n-dimensional topological manifold with boundary of dimension n, then
intM is a manifold (without boundary) of dimension n and ∂manM is a manifold
(without boundary) of dimension n− 1.

If M ⊂ Rm is a manifold with boundary and n = m then the two concepts
coincide: ∂topM = ∂manM . But if n < m then they do not need to: for example,
the sphere S2 with a small open disk E removed is a two-dimensional manifold with
boundary, and ∂man(S2 \E) is the topological boundary of E in S2 (which is a circle
S1). But if we sit S2 inside R3 in the standard way the topological boundary of
S2 \ E in R3 is all of S2 \ E.

Remark 36.4. We won’t prove (or use) the following facts, but they are good to
know:

• Any closed topological manifold is homotopy equivalent to a cell complex.

• Any closed topological manifold of dimension n 6= 4 is homeomorphic to a cell
complex.

• Any closed smooth manifold actually is a cell complex.

The following lemma gives a homological way of defining the dimension of a
topological manifold.

Lemma 36.5. Let M be an n-dimensional topological manifold and let A be an
abelian group. For any point x ∈M , one has

Hi(M,M \ x;A) ∼=

{
A, i = n,

0, i 6= n,

Proof. Choose a chart ϕ : U → Rn centred at x. Then for any i ≥ 0, one has

Hi(M,M \ x;A) ∼= Hi(U,U \ x;A), by excision,
∼= Hi(Rn,Rn \ 0;A), as ϕ is a homeomorphism.

Proposition 36.6. Let M be an n-dimensional topological manifold and let A be
an abelian group. Let

O(M ;A) :=
⊔
x∈M

Hn(M,M \ x;A)

and let p : O(M ;A)→M denote the map that sends any element of Hn(M,M \x;A)

to x. Then A → O(M ;A)
p−→ M is a fibre bundle, where we give A the discrete

topology (thus p is a covering space, cf. Definition 33.4.)
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The proof of Proposition 36.6 requires an auxiliary lemma, which in turns needs
the following definition.

Definition 36.7. Let M be an n-dimensional topological manifold and let A be an
abelian group. Given subsets X ⊆ Y ⊆M we denote by

ρYX : Hn(M,M \ Y ;A)→ Hn(M,M \X;A)

the homomorphism induced by the inclusion (M,M \ Y ) ↪→ (M,M \X).

Definition 36.8. Let us say a closed set K ⊂ M is a convex set if there exists a
chart ϕ : U → Rn with K ⊂ U such that ϕ(K) is a compact convex subset of Rn.

Lemma 36.9.

1. If K ⊂M is a compact convex set then ρKx is an isomorphism for all x ∈ K.

2. Let x ∈ M and let W be a neighbourhood of x. Then there exists a neigh-
bourhood U ⊂ W of x such that for all y ∈ U , the homomorphism ρUy is an
isomorphism.

Proof. Let K be a compact convex set. We may assume that there is a chart ϕ : U →
Rn with K ⊂ U such that ϕ(K) = D, where D is a compact convex subset of Rn
such that 0 ∈ D ⊂ Bn. Consider the following commutative diagram, where we omit
the coefficient group A for simplicity:

Hn(Bn, Sn−1) Hn(Rn,Rn \D) Hn(U,U \K) Hn(M,M \K)

Hn(Bn, Sn−1) Hn(Rn,Rn \ 0) Hn(U,U \ x) Hn(M,M \ x)

=

Hn(ϕ)

ρKx

Hn(ϕ)

All the horizontal maps are isomorphisms: the left-hand ones are because the
inclusion Sn−1 ↪→ Rn \D is a homotopy equivalence. The middle two are because ϕ
is a homeomorphism, and the right-hand two are excision isomorphisms.

The second statement is an immediate corollary of the first, since given any
neighbourhood W of a point x we can always find a compact convex set K such that
x ∈ K ⊂W . Then any neighbourhood U ⊂ K of x works.

We can now prove Proposition 36.6.

Proof of Proposition 36.6. Fix x ∈M , and let U be a neighbourhood of x such that
ρUy is an isomorphism for all y ∈ U . Define

k : U ×Hn(M,M \ x;A)→ p−1(U)

by k(y, 〈c〉) := ρUy ◦ (ρUx )−1〈c〉. Define a topology on O(M ;A) by declaring k to be
a homeomorphism. We need to check that if k and k′ are two such maps defined on
overlapping neighbourhoods U and U ′ of x and x′ respectively, then the composition

(k′)−1 ◦ k : (U ∩ U ′)×Hn(M,M \ x;A)→ (U ∩ U ′)×Hn(M,M \ x′;A)
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is continuous. Fix y ∈ U ∩U ′ and choose a neighbourhood V of y such that ρVz is an
isomorphism for all z ∈ V . Now consider the following commutative diagram, where
we omit the coefficient group A from the notation:

Hn(M,M \ z)

Hn(M,M \ x) Hn(M,M \ U) Hn(M,M \ U ′) Hn(M,M \ x′)

Hn(M,M \ V )

ρUx

ρUz

ρUV

ρU
′

z

ρU
′

V

ρU
′

x′
ρVz

The map (k′)−1 ◦ k is thus given by

(k′)−1 ◦ k(z, 〈c〉) =
(
z, ρU

′
x′ ◦ (ρU

′
V )−1 ◦ ρUV ◦ (ρUx )−1〈c〉

)
.

In particular, the second component of (k′)−1 ◦ k does not depend on the choice of
z ∈ V , which implies that (k′)−1 ◦ k is continuous.

To complete the proof, we set h := k−1 : p−1(U)→ U ×Hn(M,M \ x;A), which
gives us a local trivialisation of O(M ;A).

Let us now put this in an nice categorical setting.

Definition 36.10. Let X be an topological space. Given two open subsets U ⊆
V ⊆ X, let ıVU : U ↪→ V denote the inclusion. Let Op(X) denote the category whose
objects are the open sets of X, and whose morphism sets Hom(U, V ) are empty if
U * V and have precisely one element if U ⊆ V :

Hom(U, V ) =

{
{eVU}, U ⊆ V,
∅, U 6⊆ V,

Definition 36.11. Let C be a category. A presheaf over X with values in C is
a contravariant functor T : Op(X)→ C. A pre-cosheaf over X with values in C is2

a covariant functor Op(X)→ C.

Presheaves are more common than pre-cosheaves in mathematics; however in this
course we will mainly work with pre-cosheaves. Here is the standard example of a
presheaf.

Example 36.12. Let X be a topological space. Given an open set U of X, let C(U)
denote the set of continuous functions f : U → R. We can give C(U) the structure
of a commutative ring under pointwise operations. If U ⊂ V and ıVU : U ↪→ V is the
inclusion then if f ∈ C(V ) one has f ◦ ıVU ∈ C(U). Thus we have the presheaf of
continuous functions

C : Op(X)→ ComRings, U 7→ C(U),

and
C(eVU ) : C(V )→ C(U), f 7→ f ◦ ıVU .

One normally writes f |U instead of f ◦ ıVU .

2Yes, I agree this terminology seems backwards... But that’s just life.
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Remark 36.13. In fact, this is an example of a sheaf (not just a presheaf). However
we won’t define sheaves (or cosheaves) in this course, since we do not need them, and
thus we will not discuss this.

Example 36.14. Let F → E
p−→ X be a fibre bundle. Given an open subset U ⊂ X,

let Γ(U ;E) denote the space of continuous sections s : U → E of p, i.e. continuous
maps s : U → E such that s(x) ∈ Ex for all x ∈ U . If U ⊂ V and s ∈ Γ(V ;E) then
s ◦ ıVU ∈ Γ(U ;E), where again ıVU : U ↪→ V is the inclusion. Thus we have another
presheaf

Γ: Op(X)→ Sets.

Here is an example of a pre-cosheaf:

Example 36.15. Let M be an n-dimensional topological manifold and let A be an
abelian group. Consider the functor

Hn(M,�;A) : Op(M)→ Ab

which sends an open set U to the homology group Hn(M,U ;A) and sends an inclusion

U ↪→ V to the induced map ρ
M\U
M\V : Hn(M,U ;A)→ Hn(M,V ;A)

Now let us specialise Example 36.14 to the situation at hand.

Example 36.16. Let M be an n-dimensional topological manifold and let A be an
abelian group. Given a closed subset K ⊂ M , let Γ(K;A) denote the space of
continuous sections s : K → O(M ;A) of p. Since A has the discrete topology, a
section is continuous if and only if its expression in a local trivialisation is locally
constant. This means that if x ∈ K and U is a path-connected neighbourhood of x
such that O(M ;A) is trivial over U via h : p−1(U)→ U ×Hn(M,M \ x;A) then the
function π′′ ◦ h ◦ s : U → Hn(M,M \ x;A) should be a constant function.

Let Γc(K;A) ⊂ Γ(K;A) denote those sections with compact support, i.e. for
which there exists a compact set C ⊆ K such that s(x) = 0 for all x ∈ K \ C.

Since A is a group, and not just a topological space, if s, t : K → O(M ;A) are
two sections, we can add them together to form a new section s + t. Thus Γ(K;A)
and Γc(K;A) are also abelian groups.

So far, this is not quite the same as in Example 36.14 since here we have defined
Γc(K;A) for K a closed set, not an open set. To this end we consider the functor

Γc(M \�;A) : Op(M)→ Ab

and if V ⊆ U then

Γc(e
U
V ;A) : Γc(M \ V ;A)→ Γc(M \ U ;A), s 7→ s|M\U .

Note that Γc(M \�;A) is actually a pre-cosheaf (not a presheaf), since the operation
U 7→M \ U is contravariant (i.e. if U ⊂ V then X \ V ⊆ X \ U .)

In conclusion, we have two pre-cosheaves Op(M)→ Ab:

Hn(M,�;A) and Γc(M \�;A).

Our aim now is to construct a natural transformation between them. This requires
the following lemma.
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Lemma 36.17. Let U ⊂ M be open. If 〈c〉 ∈ Hn(M,U ;A) then φ〈c〉(y) := ρ
M\U
y 〈c〉

belongs to Γc(M \ U ;A).

Proof. Fix x ∈ M \ U and let W be a small neighbourhood of x with W ⊂ M \ U .
Using a local trivialisation h : p−1(W ) → W × Hn(M,M \ x;A) as in the proof of

Proposition 36.6, the section φ〈c〉 becomes y 7→ (y, ρWx ◦ ρ
M\U
W 〈c〉) on p−1(W ), which

is continuous by the definition of the topology on O(M ;A).
It remains to show s ∈ Γc(M \ U ;A). Choose a cycle c =

∑
i ai ⊗ σi ∈ Zn(M ;A)

that represents 〈c〉. There exists a compact set C ⊂ M such that each singular
simplex σi : ∆n →M in c has σi(∆

n) ⊂ C (cf. Lemma 17.5). Now suppose y ∈M \C.
Then the image of c under the composition

Cn(C;A)→ Cn(M ;A)→ Cn(M,C;A)→ Cn(M,M \ y;A)

is zero. But this image is a representative of φ〈c〉(y). Thus the support of φ〈c〉 is
contained in the compact set (M \ U) ∩ C.

Lemma 36.18. There is a natural transformation Φ: Hn(M,�;A) → Γc(M \ �;A)
given by setting

Φ(U)〈c〉 = φ〈c〉,

where φ〈c〉 was defined in Lemma 36.17.

Proof. One needs only check that for closed sets K ⊂ L the following diagram
commutes:

Hn(M,M \ L;A) Hn(M,M \K;A)

Γc(L;A) Γc(K;A)

Φ(L)

ρLK

Φ(K)

s 7→s|K

This however is immediate from the definition.

What is much less obvious is that Φ is actually an natural isomorphism. We will
prove the following theorem next lecture.

Theorem 36.19. Let M be an n-dimensional topological manifold. Let K ⊂ M be
closed. Let A be an abelian group. Then Φ(M \K) : Hn(M,M \K;A)→ Γc(K;A)
is an isomorphism of abelian groups. Moreover

Hi(M,M \K;A) = 0, ∀ i > n.

Theorem 36.19 is the first of two major theorems about the homology of manifolds
(the second is Poincaré Duality, which we will cover in Lecture 39. The reason is
it useful is that the group Γc(K;A) is much easier to compute. For instance, if we
take A = Z2 then it follows immediately3 from Theorem 36.19 that if M is a closed
connected n-dimensional topological manifold then Hi(M ;Z2) = 0 for i > n and
Hn(M ;Z2) ∼= Z2.

3Exercise: Why? (If you can’t do the exercise, fear not: we will go over this in detail next lecture.)
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LECTURE 37

Orientability and the cap product

We begin this lecture by proving Theorem 36.19 from the last lecture. Let us recall
the statement.

Theorem 37.1. Let M be an n-dimensional topological manifold. Let K ⊂ M be
closed. Let A be an abelian group. Then Φ(M \K) : Hn(M,M \K;A)→ Γc(K;A)
is an isomorphism of abelian groups. Moreover

Hi(M,M \K;A) = 0, ∀ i > n. (37.1)

To simplify the notation during the proof we will write Φ(K) instead of Φ(M \K).

Proof. The proof is quite complicated, and we will induct over the “complexity” of
K (the precise meaning of this will become clear during the proof.) Let (♥K) be
short for the statement that the theorem is true for the closed set K. So our goal
is to prove (♥K) for every closed set K. Throughout the proof we will suppress the
coefficient group A from all our notation, since it plays no role. We will prove the
result in five steps.

1. Assume that (♥K), (♥L), and (♥K ∩L) hold. We prove that (♥K ∪L) holds.
For this consider the Mayer-Vietoris sequence associated to M \ (K ∩L), M \K and
M \ L. We obtain the following commutative diagram, where we are using the fact
that Φ is a natural transformation.

Hn+1(M,M \ (K ∩ L)) 0

Hn(M,M \ (K ∪ L)) Γc(K ∪ L)

Hn(M,M \K)⊕Hn(M,M \ L) Γc(K)⊕ Γc(L)

Hn(M,M \ (K ∩ L)) Γc(K ∩ L)

∼=

Φ(K∪L)

(Φ(K),Φ(L))

Φ(K∩L)

The Five Lemma tells us that Φ(K ∪ L) is an isomorphism, and the fact that
Hi(M,M \ (K ∪L)) = 0 for i > n follows directly from the Mayer-Vietoris sequence.
Thus (♥K ∪ L) holds.

2. We now prove that (♥K) holds for any compact convex set K. Indeed, for
such K we apply the commutative diagram from the proof of part (1) of Lemma 36.9
but with Hi instead of Hn. If i > n then the left-hand groups are all zero, and hence
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Hi(M,M \ K) = 0 for i > n. Moreover from the same lemma we have that ρKx is
an isomorphism for each x ∈ K. This implies that Φ(K) is an isomorphism, since a
section over a connected set is determined by a single value.

Now by induction on m ≥ 1, we see that (♥K1 ∪ · · · ∪Km) holds if K1 ∪ · · · ∪Km

is contained in the domain of a chart ϕ : U → Rn and each Ki is compact convex.
Indeed, we just did the case m = 1 and Step (1) gives the inductive step.

3. Now suppose K is any closed compact set contained in the domain of a chart
ϕ : U → Rn. Let W ⊂ U be any neighbourhood of K. Then there exists a closed
set L which is a finite union of compact convex sets such that K ⊆ L ⊂ W . The
previous step tells us Φ(L) is an isomorphism. We now take the filtered colimit over
all such L to obtain

Hi(M,M \K) = colim−−−−−→
L

Hi(M,M \ L) = 0, ∀ i > n,

and for i = n we get a commutative diagram:

colim−−−−−→LHn(M,M \ L) Hn(M,M \K)

colim−−−−−→L Γc(L) Γc(K)

Φ(K)

The top horizontal map is an isomorphism by a relative version of Corollary 17.6 (we
used this in the proof of Theorem 17.9.) The left-hand vertical map is an isomor-
phism, since each individual Φ(L) is an isomorphism.

Let us prove that the bottom horizontal map is an isomorphism. Indeed, if s, s′ are
two sections in Γc(L) for some L such that s|K = s′|K then since sections are locally
constant, there is another such K ⊆ L′ ⊆ L such that s|L′ = s′|L′ , and thus s and
s′ give the same element in the filtered colimit. This shows that bottom horizontal
map is injective. To show it is surjective, we must show that any s ∈ Γc(K) extends
to some L containing K. Again by locally constancy we can do this locally, so if
x ∈ K then there is an open set U(x) such that s extends to a section sx defined on
U(x)∩K. Since K is compact we can cover K by finitely many such U(x). Now set

U :=

{
z ∈

⋃
i

U(xi) | sxi(z) = sxj (z) if z ∈ U(xi) ∩ U(xj)

}
.

This is open and contains K, and by construction s extends to U . Now choose any
L of the desired form such that K ⊆ L ⊂ U . Then s extends to L, and hence the
map is surjective.

An arbitrary compact set can be written as a finite union of compact sets con-
tained in charts, so by induction and Step (1) again we obtain the result in the
compact case

4. Now suppose K is a closed set with the property that we can write K =
⋃∞
i=1 Li

where each Li is compact and has a neighbourhood Ui such that Ui∩Uj = ∅ for i 6= j.
We show that (♥K) holds. Indeed, by Step (3) (♥Li) holds for all i. Moreover since
the Li have disjoint open neighbourhoods , using additivity of both homology groups
and sections we see that Φ(K) =

∑
i Φ(Li), and hence (♥K) holds too.
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5. We now complete the proof for an arbitrary closed set K. Since M is para-
compact and has at most countably many connected components, we can write M
as a union

⋃∞
i=1Ci where Ci ⊂ C◦i+1 are compact sets. Set C0 = ∅ and set

Li = K ∩
(
Ci \ C◦i−1

)
.

Set K ′ =
⋃
i is odd Li and K ′′ =

⋃
i is even Li. Now K ′, K ′′ and K ∩ K ′′ satisfy the

hypotheses1 of Step (4), and hence (♥K ′), (♥K ′′) and (♥K ′ ∩ K ′′) hold. Since
K = K ′ ∪K ′′, by Step (1) we also have that (♥K) holds.

We now specialise our discussion of the fibre bundle O(M ;A) to the case where
A is a commutative ring, and using this to define what it means for a topological
manifold to be orientable.

Definition 37.2. Let M be an n-dimensional topological manifold and let R be a
commutative ring. Then for any x ∈ M , the group Hn(M,M \ x;R) is a free R-
module of rank 1. A generator of Hn(M,M \x;R) (which corresponds to an element
of R with a multiplicative inverse) is called a local R-orientation of M at x.

Definition 37.3. Let M be an n-dimensional topological manifold and let R be a
commutative ring. Let K ⊂M be a closed subset. An R-orientation of M along K
is a continuous section s ∈ Γ(K;R) such that s(x) is a generator of Hn(M,M \x;R)
for all x ∈ K. Thus an R-orientation along K is a continuous choice of local R-
orientation at every point x ∈ K. We say M is R-orientable along K if an
R-orientation along K exists. For K = M , we simply say M is R-orientable. If
we consider M equipped with such an R-orientation s then we say than M is R-
oriented.

Remark 37.4. Note that if K ⊂ L ⊂ M and M is R-orientable along L then M is
also R-orientable along K, since if s ∈ Γc(L;R) is an R-orientation of M along L
then s|K ∈ Γc(K;R) is an R-orientation of M along K.

Definition 37.5. Given a commutative ring R, let U(R) denote elements of R with
a multiplicative inverse (the “units”). Then U(R) becomes an abelian group under
multiplication.

Definition 37.6. Let Ori(M ;R) ⊂ O(M ;R) denote the subbundle whose fibre over
x ∈ M is U(R) ⊂ R ∼= Hn(M,M \ x;R). We call Ori(M ;R) the R-orientation
covering of M . Then U(R) → Ori(M ;R) → M is another fibre bundle with fibre
U(R), and (R,U(R))→ (O(M ;R),Ori(M ;R))→M is a fibre bundle pair.

Thus an R-orientation ofM alongK ⊂M is the same thing as a section of s : K →
Ori(M ;R). For R = Z, we drop the R from the notation and the terminology. Since
U(Z) = {±1} ∼= Z2, Ori(M) is a double covering, which we call the orientation
covering.

Proposition 37.7. Let M be an n-dimensional topological manifold. The following
are equivalent:

1Here we are using the point-set topological fact that manifolds are always normal topological spaces.

3



1. M is orientable.

2. M is orientable along any compact subset.

3. Ori(M)→M is a trivial fibre bundle.

4. O(M)→M is a trivial fibre bundle.

Proof.

• (1)⇒ (2) is a special case.

• (2)⇒ (3): We may assume M is connected, since a fibre bundle is trivial if and
only if it is trivial over every connected component of the base. Since Ori(M) is
a double cover (i.e. the fibre is Z2), either Ori(M) is connected or it is trivial.
If Ori(M) is connected, then there exists a path in Ori(M) between any two
points of a given fibre. The image of such a path is a compact connected subset
K of M , and by assumption Ori(M)|K is non-trivial, since we can connect two
points of a fibre in it. But by (2) there exists a section of Ori(M)|K , and hence
Ori(M)|K is trivial. Contradiction. Thus Ori(M) is not connected, and hence
it is trivial.

• (3)⇒ (4): The bundle Ori(M) is trivial if and only if it has a section. If s is a
section of Ori(M) then

M × Z→ O(M), (x, n) 7→ ns(x)

is a trivialisation of O(M).

• (4) ⇒ (1): If O(M) is trivial then in particular it has a section with values in
the set of generators.

So far we have defined orientability in terms of the existence of sections of
O(M ;R). Using Theorem 36.19 however we can transfer to a statement about ho-
mology classes. (This is the main point of Theorem 36.19!)

Theorem 37.8. Let M be an n-dimensional topological manifold and let R be a
commutative ring. Let K ⊆M be a closed connected subset.

1. If K is not compact then Hn(M,M \K;R) = 0.

2. If K is compact and M is R-orientable along K then Hn(M,M \K;R) ∼= R.
There exists a homology class 〈oK〉 ∈ Hn(M,M \K;R) such that ρKx 〈oK〉 is a
generator of Hn(M,M \ x;R) for all x ∈ K.

3. If K is compact and M is not R-orientable along K then one has Hn(M,M \
K;R) = {r ∈ R | 2r = 0}.

Proof. Since K is connected, a section of Γ(K;R) is determined by its value at a
single point. If this value is non-zero, then the section is non-zero everywhere. Thus
there do not exist non-zero sections with compact support if K is non-compact:
Γc(K;R) = 0. Thus Theorem 36.19 tells us that if K is connected and non-compact
then Hn(M,M \K;R) = 0. (This part does not need R to a ring.)
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If K is compact then we have a commutative diagram:

Hn(M,M \K;R) Γ(K;R)

Hn(M,M \ x;R) Γ({x};R).

Φ(K)

ρKx s 7→s(x)

Φ({x})

If M is orientable along K then we can choose s such that s(x) is a generator. The
desired class is then given by 〈oK〉 = Φ(K)−1(s).

The third part is on Problem Sheet P.

In the case R = Z, one can also obtain information about the torsion subgroup
of Hn−1(M,M \K). This is the content of the following result, whose proof is again
on Problem Sheet P.

Proposition 37.9. Let M be an n-dimensional topological manifold. Let K ⊆ M
be a closed connected subset.

1. If K is non-compact then the torsion subgroup of Hn−1(M,M \K) is zero.

2. If K is compact and M is orientable along K then the torsion subgroup of
Hn−1(M,M \K) is also zero.

3. If K is compact and M is not orientable along K then the torsion subgroup of
Hn−1(M,M \K) is isomorphic to Z2.

Remark 37.10. Let us rewrite Remark 37.4 in terms of homology classes. Suppose
K ⊂ L are compact subsets of M and M is orientable along L with corresponding
class 〈oL〉 ∈ Hn(M,M \ L;R). Then the class 〈oK〉 := ρLK〈oL〉 has the property that
ρKx 〈oK〉 is a generator of Hn(M,M \ x;R) for all x ∈ K. Thus an R-orientation of
M is equivalent to a collection

{〈oK〉 | K ⊂M is compact}

of homology classes 〈oK〉 ∈ Hn(M,M \K;R) that satisfy the following two compat-
ibility conditions:

1. For every x ∈ K, the class ρKx 〈oK〉 is a generator of Hn(M,M \ x;R).

2. If K ⊂ L then ρLK〈oL〉 = 〈oK〉.

Let us now assume that M itself is compact and connected. Then Theorem 37.8
can be improved:

Corollary 37.11. Let M be a compact connected n-dimensional topological man-
ifold. If M is non-orientable then Hn(M) = 0. If M is orientable then Hn(M) ∼= Z,
and for each x ∈M the restriction Hn(M)→ Hn(M,M \ x) is an isomorphism.

Definition 37.12. Let M be an orientable compact connected n-dimensional topo-
logical manifold. A generator of Hn(M) is called a fundamental class of M . As
above, we use the notation 〈oM 〉 to denote a fundamental class. An oriented2 closed
manifold is thus a manifold together with a choice of fundamental class.

2“Orientable” means: a fundamental class exists. “Oriented” means: we have chosen a fundamental
class.
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Remark 37.13. Fundamental classes can be used to extend the definition of degree
(cf. Definition 15.2) to orientable compact connected manifolds.

Remark 37.14. A vector space of dimension n is trivially an n-dimensional topolog-
ical manifold. As a check to make sure you have understood the definitions, convince
yourself that Definition 37.3 is consistent with Definition 35.12 from the two lectures
ago.

Now let us take a step back and define a new product, called the cap product.
This definition works on an arbitrary topological space, although it is most useful on
manifolds due to the duality theorems we will prove in two lectures time.

Definition 37.15. Let X be a topological space and let X ′, X ′′ be open sets, let R
be a commutative ring. The cap product consists of a family of R-linear maps

Hn(X,X ′;R)⊗Hn+m(X,X ′ ∪X ′′;R)→ Hm(X,X ′′;R), 〈α〉 ⊗ 〈c〉 7→ 〈α〉 _ 〈c〉.

As with the cup product, we will give the definition first in the absolute case
(where X ′ = X ′′ = ∅) and then discuss the relative case. For this we begin on the
chain level and define an operation

Cn(X;R)⊗ Cn+m(X;R)→ Cm(X;R), α⊗ c 7→ α _ c. (37.2)

If σ : ∆n+m → X, we set

α _ σ := α(σ ◦ Fn)⊗ (σ ◦Bm)

This is indeed an element of Cm(X;R), since α(σ ◦ Fn) is an element of R, and
σ ◦ Bm : ∆m → X is a singular m-simplex in X. Now extend this by linearity to
define the operation (37.2).

The following lemma is a proved in the same way as we dealt with similar state-
ments for the cup product in Lecture 30, using the face relations from Lemma 30.12.
We omit most of the details.

Lemma 37.16. Let X,Y be topological spaces. Let f : X → Y be continuous. Let
α ∈ Cn(X;R), β ∈ Cp(X;R), c ∈ Cn+m(X;R) and γ ∈ Cn(Y ;R). Then:

1. ∂(α _ c) = (−1)n(α _ ∂c− dα _ c).

2. If p = m then β(α _ c) = (α ^ β)(c).

3. If p ≤ m then (α ^ β) _ c = β _ (α _ c).

4. νX _ c = c, where νX ∈ C0(X;R) was defined in (30.2).

5. f#(f#γ _ c) = γ _ f#c.

Proof. The proof of (1) is on Problem Sheet P.
Let us prove (2). Assume that σ : ∆n+m → X is a singular n-simplex. Then

β(α _ σ) = α(σ ◦ Fn) · β(σ ◦Bm), which is exactly the formula for (α ^ β)(σ).
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The proof of (3) is similar and I omit this, and the proof of (4) is immediate. So
let us skip to the proof of the naturality statement (5). For this we have

γ _ f#σ = γ(f ◦ σ ◦ Fn)⊗ (f ◦ σ ◦Bm)

= f#γ(σ ◦ Fn)⊗ (f ◦ σ ◦Bm)

= f#(f#γ _ σ),

as required.

It follows from statement (1) of Lemma 37.16 that the cap product operation
(37.2) is well defined on the level of (co)homology. This is the same argument as in
the proof of Theorem 30.20: indeed, if dα = ∂c = 0 then ∂(α _ c) = 0, and if either
α or c is a (co)boundary then α _ c is a boundary.

To extend the definition to relative groups, suppose α ∈ Cn(X,X ′;R) ⊂ Cn(X;R)
and c ∈ Cm+n(X ′;R) +Cm+n(X ′′;R). Then α _ c ∈ Cm(X ′′;R) from the definition.
Thus we have an induced cap product:

Cn(X,X ′;R)⊗ Cm+n(X;R)

Cm+n(X ′;R) + Cm+n(X ′′;R)
→ Cm(X;R)

Cm(X ′′;R)
.

Using the chain equivalence C•(X
′;R) +C•(X

′′;R)→ C•(X
′ ∪X ′′;R) (cf. the proof

of Theorem 14.8), we obtain the cap product as in Definition 37.15.

Remark 37.17. An inspection of the definition of (37.2) shows that we can be a
little more precise with the choice of coefficients. Indeed, suppose M and N are
R-modules. Then the cap product in Definition 37.15 can actually be realised as

Hn(X,A;M)⊗Hn+m(X,A∪B;N)→ Hm(X,B;M⊗RN), 〈α〉⊗〈c〉 7→ 〈α〉 _ 〈c〉.
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LECTURE 38

Čech cohomology

We now introduce a different type of cohomology which will be useful in our study
of duality. This is called Čech cohomology.

Remark 38.1. Some of you may have seen the definition of Čech cohomology before–
for example, in an Algebraic Geometry course—and it looked terribly complicated.
Luckily we will give the definition only in a special case (namely: compact subsets of
a Euclidean neighbourhood retract), for which one can give a much easier definition.

Definition 38.2. A topological space X is called a Euclidean neighbourhood
retract if there exists an embedding i : X → Rn and a neighbourhood U of i(X)
that retracts onto i(X). By identifying X with i(X), we can think of a Euclidean
neighbourhood retract as a subset X of Rn with the property that there exists an
open set U containing X and a continuous map r : U → X such that ı ◦ r = idX ,
where ı : X ↪→ U is the inclusion.

Let us now begin by stating without proof two pieces of “point-set topology”
about Euclidean neighbourhood retracts. They show in particular that the property
of being a Euclidean neighbourhood retract is a topological invariant. The proofs are
not that difficult, but we don’t have time to give them here, and they don’t involve
any ideas relevant to the course. Nevertheless, I invite you to try them as exercises
if you are bored and in the mood for some point-set topology.

The first result characterises Euclidean neighbourhood retracts.

Proposition 38.3. (Properties of Euclidean neighbourhood retracts)

1. Let X be a Hausdorff space. Assume X can be covered by finitely many locally
compact1 open sets Xi. Assume each Xi is a Euclidean neighbourhood retract.
Then X is an Euclidean neighbourhood retract.

2. A set X ⊂ Rn is a Euclidean neighbourhood retract if and only if X is locally
compact and locally contractible2.

The second result explains why they are useful. Again, we emphasise we are only
introducing the special case we are going to use (for instance, in the next result one
could replace “compact” with “locally compact”.)

Proposition 38.4. (Extending homotopies in Euclidean neighbourhood retracts)
Let X and Y be Euclidean neighbourhood retracts, and let K ⊂ X be compact.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
1A topological space Y is locally compact if each point has a compact neighbourhood.
2A topological space Y is locally contractible if each point has a local basis of contractible neighbour-

hoods.
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1. If f : K → Y is continuous then there exists a neighbourhood U of K in X and
a continuous map F : U → Y such that F |K = f .

2. If f, g : X → Y are continuous maps and ht : K → Y is a homotopy from f |K to
g|K then there exists a neighbourhood U of K in X and a homotopy h̃t : U → Y
such that h̃0 = f |U , h̃1 = g|U and h̃t|K = ht for all t ∈ I.

A corollary of these results is the following statement, which explains why they
fit into the framework we are interested in.

Corollary 38.5.

1. If M is a topological manifold and K ⊂ M is a compact set, then there exists
an Euclidean neighbourhood retract X ⊂M such that K ⊂ X.

2. If M is a closed topological manifold then M is a Euclidean neighbourhood
retract.

3. If X is a finite cell complex then X is a Euclidean neighbourhood retract.

Now let us begin the construction.

Definition 38.6. Let K denote the category3 whose objects are pairs (L,K), where
K ⊆ L are compact subsets of some Euclidean neighbourhood retract, and whose
morphisms are just the usual continuous maps of pairs:

HomK((L,K), (L′,K ′)) =
{
f : (L,K)→ (L′,K ′), f continuous

}
,

with composition just the normal composition of functions. Thus K is a full subca-
teogory of Top2.

Suppose (L,K) ∈ obj(K). Then by assumption there exists a Euclidean neigh-
bourhood retract X such that K ⊂ L ⊂ X. Suppose we are given two pairs
U ⊂ V ⊂ X and U ′ ⊂ V ′ ⊂ X of open sets, such that K ⊂ U ⊂ U ′, L ⊂ V ⊂ V ′.
Then we have a commutative diagram of inclusions:

(L,K) (V,U)

(V ′, U ′).

Now fix k ≥ 0 and pass to singular cohomology with coefficients in A:

Hk(L,K;A) Hk(V,U ;A)

Hk(V ′, U ′;A)

(38.1)

3I did initially try and call this category by the more “logical” name CompSubsetsENR2 but then
decided that was stupid and just went with K. . .

2



Let Op2
(L,K)(X) denote the subcategory of Op2(X) of pairs of open sets (V,U) such

that (L,K) ⊂ (V,U), and whose morphisms are again given by inclusions (V,U) ↪→
(V ′, U ′). Now let UX(L,K) denote the opposite category (cf Definition 28.1), i.e.
with the same objects but “reverse” inclusions as morphisms. Thus if (V,U) and
(V ′, U ′) belong to UX(L,K) then:

Hom((V ′, U ′), (V,U)) =

{
{eV

′,U ′

V,U }, U ⊆ U ′, V ⊆ V ′,
∅, otherwise.

Then from (38.1), we have a filtered diagram:

Hk : UX(L,K)→ Ab,

(V,U) 7→ Hk(V,U ;A), eV
′,U ′

V,U 7→ Hk(ıV
′,U ′

V,U ) : Hk(V ′, U ′;A)→ Hk(V,U ;A),

where ıV
′,U ′

V,U : (V,U) ↪→ (V ′, U ′) is the inclusion. This is indeed a filtered diagram,
i.e. a covariant functor, since we already passed to opposite category UX(L,K) to
filter over, which “cancels out” the contravariance of Hk.

Thus we can take the colimit (remember we already know that colimits always
exist in Ab, cf. Example 16.19), which gives us our desired construction.

Definition 38.7. Let K ⊂ L ⊂ X be compact subspaces of a Euclidean neighbour-
hood retract, and let A be an abelian group. We define the Čech cohomology of
(L,K) with coefficients in A to be the abelian group

Ȟk(L,K;A) := colim−−−−−→H
k(V,U ;A)

We use the notation Ȟk(K;A) for Ȟk(K, ∅;A).

You may wonder why we have omitted the ambient Euclidean neighbourhood
retract X in our notation Ȟk(L,K). In fact, the Čech cohomology groups do not
depend on X, see Remark 38.13 below.

Before going any further, we will need the following technical statement about
filtered colimits.

Definition 38.8. Let (Λ,�) and (Λ′,�′) be two directed sets (cf. Example 16.12).
A map f : Λ→ Λ′ is order preserving if λ � µ implies that f(λ) �′ f(µ). We say
that f is cofinal if for all λ′ ∈ Λ′ there exists λ ∈ Λ such that λ′ �′ f(λ). If Λ is
a directed subset of Λ′ and f is the inclusion Λ ↪→ Λ′ then we simply say that Λ is
cofinal in Λ′.

Recall we denote by J(Λ,�) the filtered category associated to the directed set
(Λ,�). An order preserving map f : Λ → Λ′ induces a functor Pf from J(Λ,�) to
J(Λ′,�′). Explicitly, on objects the functor Pf is defined by

Pf (λ) := f(λ), λ ∈ Λ,
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On morphisms, if λ � µ and iλ,µ ∈ HomJ(Λ,�)(λ, µ) denotes the (unique) morphism
from λ to µ in J(Λ,�) then Pf is defined as

Pf (iλ,µ) := if(λ),f(µ),

where if(λ),f(µ) ∈ HomJ(Λ′,�′)(f(λ), f(µ)) is the unique morphism from f(λ) to f(µ)
in J(Λ′,�′).

Suppose C is a category and T ′ : J(Λ′,�′)→ C is a filtered diagram (i.e. a functor).
If f : Λ→ Λ′ is an order preserving map then f induces a filtered diagram

T = T ′ ◦ Pf : J(Λ,�)→ C.

The following result is left as an exercise to check how much you remember of colimits
from last semester.

Lemma 38.9. Suppose f : Λ→ Λ′ is a cofinal map between directed sets (Λ,�) and
(Λ′,�′). Suppose C is a category and T ′ : J(Λ′,�′) → C is a filtered diagram. Then
let T := T ′ ◦Pf : J(Λ,�)→ C. Then colim−−−−−→T exists if and only if colim−−−−−→T

′ exists, and
if so, then

colim−−−−−→T
∼= colim−−−−−→T

′

Lemma 38.9 implies that if K ⊂ L ⊂ X are compact subspaces and W ⊂ X is
any open subset containing L then it suffices to take the filtered colimits over those
neighbourhoods (V,U) ∈ UX(L,K) with V ⊂W . In the following, we will repeatedly
use Lemma 38.9 without further comment.

Everything we have said so far did not actually use the assumption that both K
and L were subsets of an Euclidean neighbourhood retract. In order to make Ȟk into
a contravariant functor, we need to associate a homomorphism Ȟk(f) : Ȟk(L′,K ′;A)→
Ȟk(L,K;A) to any morphism f : (L,K)→ (L′,K ′) in K. This is where the Euclidean
neighbourhood retract assumption comes in handy.

Definition 38.10. Assume that K ⊂ L ⊂ X and K ′ ⊂ L′ ⊂ X ′ and f : (L,K) →
(L′,K ′) is a continuous map of pairs. We use part (1) of Proposition 38.4 to find an
open set W ⊂ X containing L and a continuous map F : W → X ′ such that F |L = f .
Now if (V ′, U ′) ∈ UX′(L′,K ′) then (F−1(V ′), F−1(U ′)) belongs to UX(L,K). Thus
we can consider the composition:

Hk(V ′, U ′;A)
Hk(F ))−−−−→ Hk(F−1(V ′), F−1(U ′);A)→ Ȟk(L,K;A),

where the right-hand map is the map induced from the colimit. But now we get such
a map for any pair (V ′, U ′). Since Hk(F ) commutes with (reverse) inclusions, this
shows that Ȟk(L,K;A) is a solution of the filtered diagram Hk : UX′(L′,K ′)→ Ab.
Thus by definition of the colimit we get a map

Ȟk(L′,K ′;A)→ Ȟk(L,K;A).

Let us call this map Ȟk(f). In order for this to be a functor, we need to know that
H̃k(f) is independent of the choice of extension F . This is a nice exercise using part
(2) of Proposition 38.4, and I am generously leaving it for you on Problem Sheet P.
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Theorem 38.11. Čech cohomology defines contravariant functors

Ȟk : K→ Ab, ∀ k ≥ 0.

The aim of the rest of this lecture is to show that Čech cohomology with coef-
ficients in A is an Eilenberg-Steenrod cohomology theory with coefficients in A, at
least when (L,K) are themselves Euclidean neighbourhood retracts (by Proposition
38.3 this includes cell complexes.) For less well behaved spaces Čech cohomology can
differ from singular homology (and hence is not a homology theory.)

The homotopy axiom follows from the same argument that is used to show that
map Ȟk(f) is well defined, and this is also on Problem Sheet P.

Corollary 38.12. Let K ⊂ L ⊂ X and K ′ ⊂ L′ ⊂ X ′ be compact pairs in two
Euclidean neighbourhood retracts. Suppose f : (L,K) → (L′,K ′) is a homotopy
equivalence. Then Ȟk(f) : Ȟk(L′,K ′)→ Ȟk(L,K) is an isomorphism for all k ≥ 0.

Proof. Since Ȟk satisfies the homotopy axiom (Problem P.4), this follows from a
general fact about functors (Problem A.2.)

Remark 38.13. It follows from Corollary 38.12 that the Čech cohomology groups
Ȟk(L,K) do not depend on the choice of ambient Euclidean neighbourhood retract
X.

We will now verify the remaining axioms.

Proposition 38.14 (Long exact sequence). If (L,K) ∈ K then there is a long exact
sequence

· · · → Ȟk(L;A)→ Ȟk(K;A)
δ̌−→ Ȟk+1(L,K;A)→ Ȟk+1(L;A)→ . . . (38.2)

Proof. The construction of δ̌ is similar to how we constructed Ȟk(f). Let X be a
Euclidean neighbourhood retract containing L. Choose open U ⊂ V ⊂ X such that
K ⊂ U and L ⊂ V . Then we have a map

δ : Hk(U ;A)→ Hk+1(V,U ;A)

coming from the long exact sequence of the pair (V,U) in normal singular cohomology.
Composing this with the map Hk+1(V,U ;A) → Ȟk+1(L,K;A) coming from the
colimit, we then have maps

Hk(U ;A)→ Ȟk+1(L,K;A)

for each such pair (V,U). It follows that Ȟ l(L,K;A) is a solution of the filtered
diagram Hk : UX(K, ∅) → Ab. Thus by the universal property of the colimit again,
this gives us an induced map δ̌ : Ȟk(K;A)→ Ȟk+1(L,K;A).

It remains to check that the sequence (38.2) is exact. This is a general fact about
filtered colimits, but rather than prove the general statement let us simply check
exactness in our special case.

5



Suppose δ̌〈α〉 = 0. Let (V,U) be as above, and suppose 〈α〉 is represented by
〈α′〉 ∈ Hk(U ;A). Then δ〈α′〉 ∈ Hk+1(V,U ;A) represents δ̌〈α〉. Since δ̌〈α〉 = 0, δ〈α′〉
is contained in the kernel of some restriction Hk+1(V,U ;A) → Hk+1(V ′, U ′;A) (for
some (V ′, U ′) ⊂ (V,U)).

Fix such a pair (V ′, U ′). Let 〈α′′〉 ∈ Hk(U ′;A) denote the restriction of 〈α′〉. Then
δ〈α′′〉 = 0. By exactness there exists a primitive 〈β′〉 ∈ Hk(V ′;A) that maps onto
〈α′′〉 under the map Hk(V ′;A)→ Hk(U ′;A). This represents a class 〈β〉 ∈ Ȟk(L;A),
and this class maps onto 〈α〉 under the map Ȟk(L;A)→ Ȟk(K;A). This proves one
of the six conditions one needs to check exactness, and I leave the other five to you
as a wholesome exercise.

Before going any further, let us build a natural transformation Φ: Ȟ• → H•

(normal singular cohomology) which commutes with the boundary operators. In-
deed, if (V,U) ∈ UX(L,K) then the inclusion (L,K) → (V,U) induces a map
Hk(V,U ;A) → Hk(L,K;A). Since Hk is a contravariant functor, this shows that
Hk(L,K;A) is a solution of the diagram Hk : UX(L,K) → Ab, and hence there is
a map Φ(L,K) : Ȟk(L,K;A) → Hk(L,K;A). An argument similar to those above
shows that Φ is natural and commutes with the long exact sequence maps. In general
Φ is not a natural isomorphism (it need not be injective or surjective), but we do
have the following result:

Proposition 38.15. Suppose (L,K) ∈ K are both Euclidean neighbourhood retracts
themselves. Then Φ(L,K) : Ȟk(L,K;A)→ Hk(L,K;A) is an isomorphism.

Proof. Suppose K is an Euclidean neighbourhood retract. Then UK(K, ∅) has a
“maximal element”, namely (K, ∅) itself. (We will define this more formally in
Lecture 41 and call it a terminal object, cf. Definition 41.2.) Thus Ȟk(K;A) =
Hk(K;A), and so Φ(K, ∅) is an isomorphism. Similarly if L is an Euclidean neigh-
bourhood retract we have Ȟk(L;A) ∼= Hk(L;A). Finally to deduce the relative case
we use the fact we already know that Φ is natural, and apply the Five Lemma.

Proposition 38.16 (Excision). Let M,N be compact subsets of an Euclidean neigh-
bourhood retract X. Then the inclusion (M,M ∩ N) ↪→ (M ∪ N,N) induces an
isomorphism

Ȟk(M ∪N,N ;A) ∼= Ȟk(M,M ∩N ;A), ∀ k ≥ 0.

Proof. This follows from the corresponding isomorphismHk(U∪V, V ;A) ∼= Hk(U,U∩
V ;A) in singular cohomology.

Proposition 38.17 (Mayer-Vietoris). For each pair M,N of compact subsets of a
Euclidean neighbourhood retract there is a long exact Mayer-Vietoris sequence:

. . . Ȟk(M∪N ;A)→ Ȟk(M ;A)⊕Ȟk(N ;A)→ Ȟk(M∩N ;A)→ Ȟk+1(M∪N ;A)→ . . .

Proof. The usual formal consequence of excision.
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Remark 38.18. Everything we did prior to Proposition 38.16 works in the more
general setting where we only assume that L and K are locally compact. However
excision does not hold for an arbitrary pair of locally compact subsets of a Euclidean
neighbourhood retract—more hypotheses are needed. Since we will only ever use
Čech cohomology for compact subsets, I didn’t think it worth exploring this here.

In summary, we have proved:

Theorem 38.19. Let CompENR2 denote the category of compact pairs (L,K) where
K ⊆ L are both Euclidean neighbourhood retracts, with morphisms given by contin-
uous maps of pairs. Then Čech cohomology is a cohomology theory in the sense of
Eilenberg-Steenrod on CompENR2.

We conclude this lecture by emphasising once again: for an arbitrary pair (L,K) ∈
K, it is not true that the Čech cohomology of (L,K) agrees with the singular homol-
ogy. This is only true if K and L are themselves Euclidean neighbourhood retracts.
Note this is consistent with the cohomology version of Theorem 21.12—the natural
transformation Φ induces an isomorphism on a point, and hence is an isomorphism
on any pair (L,K) of compact cell complexes. But compact cell complexes are Eu-
clidean neighbourhood retracts (Proposition 38.3), so this doesn’t tell us anything
we don’t already know.
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LECTURE 39

The Duality Theorem

In this lecture we prove one of the truly key results in algebraic topology, which
we call simply the Duality Theorem. At the end of the lecture we deduce the
important special case of Poincaré Duality.

Let M be an n-dimensional topological manifold. Throughout this lecture we fix
a commutative ring R, which we will omit from the notation wherever possible.

Given any pair K ⊂ L of compact subsets of M , we can always find a Euclidean
neighbourhood retract X such that L ⊂ X ⊂M . This follows from Proposition 38.3.
In particular, the Čech cohomology Ȟk(L,K) is defined for any pair of compact
subsets of M . Assume now that M is oriented, so that for each compact subset
K ⊂M , we have a class 〈oK〉 ∈ Hn(M,M \K).

Notation: In this lecture K ⊂ L are always compact subsets of M and U and
V are open subsets U ⊂ V with

K ⊂ U and L ⊂ V.

(We are not necessarily assuming that U ⊂ L though). We denote by

ıUVKL : (V \K,U \ L) ↪→ (V,U)

the inclusion.
We use the relative cap product from Definition 37.15 with

X := V \K, X ′ := U \K, X ′′ := V \ L.

This gives us a map

Hk(V \K,U \K)⊗Hk+m(V \K, (U \K) ∪ (V \ L))
_−→ Hm(V \K,V \ L).

Now consider the composition

Hk+m(M,M \ L)→ Hk+m(M, (M \ L) ∪ U)
∼=−→ Hk+m(V \K, (U \K) ∪ (V \ L)),

where in the second map we excised the closed set M \ (V \K) contained in the open
set (M \ L) ∪ U .

If 〈c〉 ∈ Hk+m(M,M \L) then we denote by 〈c〉UVKL the image of 〈c〉 in Hk+m(V \
K, (U \K) ∪ (V \ L)).

In particular, for m = n− k and 〈c〉 = 〈oL〉 we get a map

dUVKL : Hk(V \K,U \K)→ Hn−k(V \K,V \ L)

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.

1

https://www.merry.io


given by
dUVKL〈γ〉 := 〈γ〉 _ 〈oL〉UVKL.

By excision again, this last group is isomorphic to Hn−k(M \ K,M \ L). Hence
putting this altogether, we have a map that we denote by

DUV
KL : Hk(V,U)→ Hn−k(M \K,M \ L)

and makes the following diagram commute:

Hk(V,U) Hk(V \K,U \K)

Hn−k(M \K,M \ L) Hn−k(V \K,V \ L)

Hk(ıUVKK)

DUVKL dUVKL

∼=

Our aim is to show that DUV
KL induces a map

DKL : Ȟk(L,K)→ Hn−k(M \K,M \ L).

This follows from the following naturality statement.

Lemma 39.1. Let X ⊂ M be an Euclidean neighbourhood retract containing V .
Suppose U ′ ⊂ V ′ is another pair of open sets with U ⊂ U ′ and V ⊂ V ′ ⊂ X. Then
the inclusion  : (V,U) ↪→ (V ′, U ′) satisfies for every k ≥ 0:

DU ′V ′
KL = DUV

KL ◦Hk().

The proof of Lemma 39.1 is immediate from naturality of the cap product. It
follows that the maps

DUV
KL : Hk(V,U)→ Hn−k(M \K,M \ L)

form a solution to the filtered diagram Hk : UX(L,K) → Ab, and hence the uni-
versal property of the colimit provides us with the desired map DKL : Ȟk(L,K) →
Hn−k(M \K,M \ L).

In fact, the maps DKL are natural transformations, as the following lemma proves.

Lemma 39.2. Let (L,K) ⊂ (L′,K ′) (as pairs). Then for any k ≥ 0, the following
commutes:

Ȟk(L′,K ′) Hn−k(M \K ′,M \ L′)

Ȟk(L,K) Hn−k(M \K,M \ L)

DK′L′

DKL

Proof. Let K ⊂ K ′ ⊂ U and L ⊂ L′ ⊂ V with U ⊂ V open. Let ′ : (M \K ′,M \
L′) ↪→ (M \K,M \L) denote the inclusion. Then it follows from the definition that

Hn−k(
′) ◦DUV

K′L′ = DUV
KL.

The desired commutativity is now a formal consequence of properties of colimits. I
invite you to fill in the details.
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Here then is the main result of today’s lecture. It is one of the most important
theorems in all of algebraic topology.

Theorem 39.3 (The Duality Theorem). Let M be an n-dimensional oriented topo-
logical manifold. Then for every pair K ⊂ L of compact subsets of M , the duality
homomorphism

DKL : Ȟk(L,K)→ Hn−k(M \K,M \ L)

is an isomorphism.

The proof will take us some time. The key technical result needed is the following
commutativity statement.

Proposition 39.4. For each pair K ⊂ L of compact sets the following diagram
commutes up to a sign:

Ȟk−1(K) Hn−k+1(M,M \K)

Ȟk(L,K) Hn−k(M \K,M \ L)

DK

δ̌ δ

DKL

Remark 39.5. The fact that the diagram in Proposition 39.4 only commutes up
to a sign is due to our convention on defining the cap product. It is possible (and
indeed, a lot of the literature does this) to set things up so that the diagram genuinely
commutes. This makes the formulae defining the cap product harder to remember
(and harder to lecture!) though, so I didn’t elect to do this.

In order to prove Proposition 39.4 we need the following general statement about
cap products.

Proposition 39.6. Let X be an arbitrary topological space. Assume X = X ′ ∪X ′′
with X ′, X ′′ open. Let Y ′ ⊂ X ′ and Y ′′ ⊂ X ′′ be open sets, and put Y := Y ′ ∪ Y ′′.
Fix a homology class

〈c〉 ∈ Hn(X,Y )

and let 〈c′〉 be the element that 〈c〉 maps to under the following composition:

Hn(X,Y )→ Hn(X,Y ′ ∪X ′′) ∼= Hn(X ′, Y ′ ∪ (X ′ ∩X ′′))

where the ∼= is an excision isomorphism. Similarly let 〈c′′〉 be the element that 〈c〉
maps to under the following composition:

Hn(X,Y )→ Hn(X,X ′ ∪ Y ′′) ∼= Hn(X ′′, (X ′ ∩X ′′) ∪ Y ′′)
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Then the following hexagon commutes up to a sign:

Hk−1(X ′, Y ′)

Hn−k+1(X ′, X ′ ∩X ′′) Hk−1(X ′ ∩X ′′, Y ′ ∩X ′′)

Hn−k(X
′ ∩X ′′, X ′ ∩ Y ′′) Hk(X ′′, X ′ ∩X ′′)

Hn−k(X
′′, Y ′′)

_〈c′〉

δ δ

_〈c′′〉

Proof. As the picture suggests1, the proof of this is a rather tedious application of
the Hexagon Lemma (Problem H.2). I omit the details.

Let us now get started on the proof of Proposition 39.4.

Proof of Proposition 39.4. By passing to the colimit is suffices to show that the fol-
lowing diagram commutes up to a sign:

Hk−1(U) Hn−k+1(M,M \K)

Hk(V,U) Hn−k(M \K,M \ L)

D∅U∅K

δ δ

DUVKL

(39.1)

We apply Proposition 39.6 with:

X ′ = U, X ′′ = V \K, Y ′ = ∅, Y ′′ = V \ L.

Then Hn(X,Y ) = Hn(V, V \K) ∼= Hn(M,M \L), and we take in Proposition 39.6 our
class 〈c〉 to be 〈oL〉. Then using the notation from the statement of Proposition 39.6,
the two classes 〈c′〉 and 〈c′′〉 become 〈oL〉∅U∅K and 〈oL〉UVKL respectively. We squidge the
hexagon from Proposition 39.6 to form the middle rectangle in the next diagram. The
top and bottom rectangles commute by naturality of the connecting homomorphisms
in homology and cohomology:

Hk−1(U) Hk(V,U)

Hk−1(U) Hk−1(U \K) Hk(V \K,U \K)

Hn−k+1(U,U \K) Hn−k(U \K,U \ L) Hn−k(V \K,V \ L)

Hn−k+1(M,M \K) Hn−k(M \K,M \ L).

∼=

δ

_〈oL〉∅U∅K

δ

_〈oL〉UVKL
δ

δ

1Actually the picture is a little misleading, since in order to apply the Hexagon Lemma one first
transforms this hexagon into a different hexagon. . .
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The outside square is exactly (39.1) (after reflecting and rotating). This completes
the proof.

Proposition 39.4 allows us to form the following commutative (up to a sign)
diagrams:

. . . Ȟk(L) Ȟk(K) Ȟk+1(L,K) . . .

. . . Hn−k(M,M \ L) Hn−k(M,M \K) Hn−k−1(M \K,M \ L) . . .

DL

δ̌

DK DKL

δ

The top row is the long exact sequence of the pair (L,K) in Čech cohomology (Propo-
sition 38.14). The bottom row is the long exact sequence of the triple (M,M \K,M \
L) (Problem F.4). The fact that the diagram commutes (up to a sign) uses Lemma
39.2 and Proposition 39.4. An application of the Five Lemma therefore tells us
that it suffices to prove the Duality Theorem 39.3 in the absolute case, that is, that
DK : Ȟk(K)→ Hn−k(M,M \K) is always an isomorphism.

We also need to investigate how Mayer-Vietoris sequences behave. This is the
content of the following claim:

Proposition 39.7. Suppose K and K ′ are two compact sebsets. Then the Mayer-
Vietoris sequence in Čech cohomology and the normal Mayer-Vietoris sequence for
their complements commutes up to a sign:

...
...

Ȟk(K ∪K ′) Hn−k(M,M \ (K ∪K ′))

Ȟk(K)⊕ Ȟ(K ′) Hn−k(M,M \K)⊕Hn−k(M,M \K ′)

Ȟk(K ∩K ′) Hn−k(M,M \ (K ∩K ′))

Ȟk+1(K ∪K ′) Hn−k−1(M,M \ (K ∪K ′))

...
...

DK∪K′

(DK ,DK′ )

δ

DK∩K′

δ

DK∪K′

One can prove this directly, but it is also a formal consequence of Lemma 39.2
and Proposition 39.4. Indeed, the connecting map in the Mayer-Vietoris sequence is
defined from induced maps from inclusions and ordinary (co)boundary operators in
long exact sequences—see the proof of Proposition 14.9 and the Barratt-Whitehead
Lemma (Proposition 11.4) if you are sceptical.
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We are ready to prove the Duality Theorem. We will use an argument similar
to the one used in the proof of Theorem 36.19. Let us first formalise this in the
following “meta” theorem.

Theorem 39.8. Let (♥K) be a statement about a compact set K in a fixed manifold
M . Assume that:

1. (♥K) is true for any convex compact set (cf. Definition 36.8).

2. If (♥K), (♥L) and (♥K ∩ L) holds then so does (♥K ∪ L).

3. If K1 ⊃ K2 ⊃ · · ·K :=
⋂
iKi and (♥Ki) holds for every i, then (♥K) also

holds.

Then (♥K) is true for any compact set K in M .

Proof. Since the intersection of convex sets is convex, using induction on properties
(1) and (2) tell us that (♥K1 ∪ · · · ∪Km) is true for any finite union of convex sets
contained in the same chart domain.

Next, if K is any compact set in a chart domain then K is the intersection of
a sequence K1 ⊃ K2 ⊃ · · · where each Ki is a finite union of compact convex sets.
Thus by property (3) in this case (♥K) holds.

Finally, any compact set K is a finite union of compact sets in chart domains.
Thus by induction we see that (♥K) is true in this case too.

Now let us prove the Duality Theorem.

Proof of the Duality Theorem 39.3. We will apply Theorem 39.8 where (♥K) is the
statement: DK is an isomorphism. Thus we need only verify the three properties in
the hypotheses of Theorem 39.8.

The proof of (2) is immediate from the Mayer-Vietoris sequence (Proposition
39.7) and the Five Lemma.

Now let us prove (1) in increasingly more general cases. If K is empty then all
groups are zero. Now suppose K = {x} is a single point. If 〈ox〉 is our given generator
of Hn(M,M \ x) then � 7→ � _ 〈ox〉 takes the generator ν ∈ H0(x) = Ȟ0(x) into
〈ox〉 again (this is part (4) of Lemma 37.16). Thus Dx is an isomorphism for k = 0.
But for k > 0, both Ȟk(x) and Hn−k(M,M \ x) are zero (cf. Lemma 36.5.)

Now suppose K is an arbitrary convex set in M . Let x ∈ K. By naturality of the
duality morphism (Lemma 39.2), the following commutes:

Ȟk(K) Hn−k(M,M \K)

Ȟk(x) Hn−k(M,M \ x).

DK

Dx

We claim that the two vertical maps are isomorphisms. The right-hand vertical
map is an isomorphism by part (1) of Lemma 36.9. To show that Ȟk(K) → Ȟk(x)
is an isomorphism, choose a chart ϕ : U → Rn centred at x with K ⊂ U . The set
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C := ϕ(K) is a compact convex subset of Rn and thus is an Euclidean neighbourhood
retract (this follows from Proposition 38.3). Thus we have isomorphisms

Ȟk(K) ∼= Ȟk(C) ∼= Hk(C) ∼= Hk(x) ∼= Ȟk(x).

Thus DK is indeed an isomorphism, and we have proved that hypothesis (1) holds.
To complete the proof we must show that if K1 ⊃ K2 ⊃ · · · =

⋂
iKi then the

maps

colim−−−−−→
i

Ȟk(Ki)→ Ȟk(K), and colim−−−−−→
i

Hn−k(M,M \Ki)→ Hn−k(M,M \K)

are both isomorphisms. The first isomorphism is an easy consequence of the defini-
tion; let us show surjectivity only. If 〈c〉 ∈ Ȟk(K) is represented by 〈c′〉 ∈ Hk(U) for
some open U ⊃ K then there exists i such that Ki ⊂ U whence 〈c′〉 represents an
element in Ȟk(Ki). Finally for singular homology, the fact that the second colimit is
an isomorphism follows as singular homology commutes with colimits—we used this
exact statement in (17.1), see also Remark 17.8.

Finally, let us conclude this lecture by stating two special cases of the Duality
Theorem.

Corollary 39.9 (Poincaré Duality). Let M be an oriented n-dimensional closed
topological manifold with fundamental class 〈oM 〉 ∈ Hn(M). Then

Hk(M)→ Hn−k(M), 〈c〉 7→ 〈c〉 _ 〈oM 〉

is an isomorphism.

This is immediate from the Duality Theorem, since in this case Ȟk(M) = Hk(M)
(see part (2) of Corollary 38.5). Take L = M and K = ∅, and observe that the duality
morphism is simply � 7→ � ∩ 〈oM 〉.

On Problem Sheet P, you are asked to prove Alexander Duality, which is
another famous duality result that can be seen a special case of the Duality Theorem
39.3.
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LECTURE 40

Adjoint functors

We now move onto the final section of the course. We will go back to homotopy
theory and define the higher homotopy groups πn(X,x) for a pointed topological
space (X,x).

First, however, we will spend two lectures on more abstract nonsense. In this
lecture we discuss duality in categories. Recall in Lecture 16 we defined the notion of
a colimit. We first briefly define the dual version of a colimit, which (unsurprisingly)
is called a “limit”. In Definition 16.3 we introduced a “solution” to a diagram in
a category. As mentioned in a footnote there, our definition of a solution is often
called a co-cone. This is because there is a dual notion, called a “cone”, which is
defined in exactly the same way only with the arrows reversed. As with covariant
and contravariant functors (which we typically refer to just as “functors”), in general
we will simply call both co-cones and cones simply “solutions”. Here is the formal
definition of a cone.

Definition 40.1. Let C be a category. Let J be an index category and let T : J→ C
be a diagram in C. A cone for T is an object K of C together with a family of
morphisms kα : K → T (α) in C for each object α ∈ obj(J) such that if i : α → β is
any morphism in J then the following commutes:

K T (α)

T (β)

kα

kβ
T (i)

We write (K, {kα}) to indicate the solution.

Definition 40.2. Let J be an index category and let T : J→ C be a diagram in C. A
limit is a cone (L, {lα}) that satisfies the following universal property : if (K, {kα})
is any other cone then there exists a unique morphism u : K → L such that the
following diagram commutes for every morphism i : α→ β in J:

K

L T (β)

T (α)

u

kα

kβ

lβ

lα
T (i)
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We write L = limT . If L exists, it is unique up to isomorphism.

Just as with colimits, some limits have special names. The simplest is the product.

Example 40.3. Take J to have exactly two objects and no morphisms (apart from
the identity morphisms).

♠ ♥

A product in C is the limit of a diagram T : J→ C. For example, in Sets the product
of X and Y is just the normal cartesian product X × Y . In general, the product (in
an arbitrary category) C of two objects A and B is denoted by A uB (if it exists).

On Problem Sheet Q you will show that commutativity and associativity holds
for (co)products in the following sense:

Lemma 40.4. Let C be a category and A,B,C ∈ obj(C). Then:

1. If the products A uB and B uA exist then they are isomorphic:

A uB ∼= B uA.

2. If the coproducts A tB and B tA exist then they are isomorphic:

A tB ∼= B tA.

3. If the products A uB, B u C, (A uB) u C and A u (B u C) all exist then:

(A uB) u C ∼= A u (B u C).

4. If the coproducts A tB, B t C, (A tB) t C and A t (B t C) all exist then:

(A tB) t C ∼= A t (B t C).

Warning: It does not follow without a further diagrammatic assumption that
the generalised associative law holds from the associative law involving three terms!

Remark 40.5. In Ab the product and the coproduct (cf. Example 16.8) coincide. In
Groups they do not: the product is the direct product and the coproduct is the free
product.

The dual notion to a pushout is called a pullback.

Example 40.6. Let J be a category with exactly three objects, {♥,♠,♦}, and assume
that there is unique morphism ♥ → ♠ and a unique morphism ♦ → ♠, and that the
only other morphisms are the identity morphisms (whose existence is forced). We
write this pictorially as

♥

♦ ♠
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A functor T : J → C is the same thing as a triple of objects (A,B1, B2) in obj(C)
together with a choice of two morphisms f1 : A→ B1 and f2 : A→ B2.

♥

♦ ♠

apply the functor T
B1

B2 A

f1

f2

A cone corresponds to an object D of C together with two morphisms g1 : D → B1

and g2 : D → B2 such that the following commutes:

D B1

B2 A

g1

g2 f1

f2

A limit of T is a cone (L, l1, l2) such that for any other cone (D, g1, g2) there is a
unique map u : D → L such that the following commutes:

D

L B1

B2 A

g1

g2u

l1

l2 f1

f2

We call L a pullback. In the category of sets, if f : X → Z and g : Y → Z then the
pullback of f and g is the set

X ×Z Y = {(x, y) ∈ X × Y | f(x) = g(y)} .

I invite you to check what pullbacks are in other familiar categories.

Now let us move onto a filtered limit. These are defined in the same way as
filtered colimits (i.e. one starts with a filtered category), but since the arrows point
the other way one needs to use contravariant functors.

Definition 40.7. Let J be a filtered index category (cf. Definition 16.11). A filtered
limit is a limit of contravariant functor T : J→ C (or equivalently, a limit of covariant
functor defined on the opposite category.) We use the notation lim←−−T to indicate a
limit is filtered.

As with filtered colimits, the easiest way to manufacture examples is to begin
with a directed set (Λ,�), form the corresponding index category J(Λ,�), and then
take the opposite category. Forming the opposite category essentially amounts to
replacing � with �. Let us illustrate this with the simplest possible directed set.
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Example 40.8. A sequential limit is a filtered limit on (N,≥). Explicitly, let C be
a category, and assume we are given a sequence

fn : Cn+1 → Cn, n ∈ N,

of morphisms in C. The filtered limit of T is an object lim←−−T (which we will usually
write as lim←−−nCn instead) together with a family of morphisms ln : lim←−−nCn → Cn for
n ∈ N such that

ln = fn ◦ ln+1, ∀n ∈ N.

This satisfies the universal property that if (D, {dn}) is object of C and a family of
morphisms dn : D → Cn for n ∈ N such that

dn = fn ◦ dn+1, ∀n ∈ N,

then there exists a unique morphism u : D → lim←−−nCn such that the following diagram
commutes:

D

lim←−−nCn Cn

Cn+1

u

dn+1

dn

ln

ln+1 fn

Remark 40.9. Warning: As already mentioned in Remark 34.11, the analogue of
Theorem 16.22 for limits is not true!

Definition 40.10. Let C and D be two categories. The product category C × D
is the category whose objects are ordered pairs (C,D) where C ∈ obj(C) and D ∈
obj(D), and

HomC×D((C,D), (C ′, D′)) =
{

(f, g) | f ∈ HomC(C,C ′) g ∈ HomD(D,D′)
}
.

The composition (f, g) ◦C×D (f ′, g′) is defined as you expect:

(f, g) ◦C×D (f ′, g′) :=
(
f ◦C f ′), (g ◦D g′

)
.

The identity element id(C,D) is simply the pair (idC , idD).

Remark 40.11. As the name indicates, the product category is simply the product
(in the sense of Example 40.3 above) in the category Cat of small categories.

Definition 40.12. A bifunctor is a functor defined on a product category: T : C×
D → E. We will always assume bifunctors are covariant—if we wish to consider a
bifunctor which is contravariant in one or both of its variables we simple replace the
category with the corresponding opposite category.
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Example 40.13. Let C be any category. Then there is a Hom-bifunctor

Hom: Cop × C→ Sets

which assigns to an ordered pair (A,B) of objects of C the hom-set Hom(A,B). This
bifunctor is contravariant in the first variable and covariant in the second. Explicitly,
if f : A→ B and g : C → D are morphism in C then

Hom(f, g) : Hom(B,C)→ Hom(A,D), h 7→ g ◦ h ◦ f.

Now let C and D be categories, and let S : C → D and T : D → C be covariant
functors. Conisder the two bifunctors

Hom(S(�),�) : Cop × D→ Sets, (C,D) 7→ HomD(S(C), D),

and
Hom(�, T (�)) : Cop × D→ Sets, (C,D) 7→ HomC(C, T (D)).

In general there is no reason for these two bifunctors to be related. However, since
they are both functors with the same source category (Cop×D) and the same target
category (Sets), one can ask the question as to when they are naturally isomorphic.
This leads to the notion of an adjoint pair, which is one of the most important
concepts in category theory.

Definition 40.14. Let C and D be categories, and let S : C → D and T : D → C
be covariant functors. We say that (S, T ) is an adjoint pair if there is a natural
isomorphism between the the two bifunctors

Ψ: Hom(S(�),�)→ Hom(�, T (�)).

Explicitly, this means that for every pair of objects (C,D) we are given a bijection

Ψ(C,D) : HomD(S(C), D)→ HomC(C, T (D)),

which satisfies the following naturality condition: if f : C → C ′ and g : D → D′ are
morphisms in C and D respectively, then the following diagram should commute:

HomD(S(C ′), D) HomC(C ′, T (D))

HomD(S(C), D′) HomC(C, T (D′))

Ψ(C′,D)

Hom(S(f),g) Hom(f,T (g))

Ψ(C,D′)

(40.1)

One calls S the left adjoint functor and T the right adjoint functor. The ordering
is important: if (S, T ) is an adjoint pair then (T, S) may not be.

Here is a trivial example.
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Example 40.15. Let Forget : Ab→ Sets denote the forgetful functor. Let Free : Sets→
Ab denote the free functor that sends a set X to the free abelian group F (X) with
basis X. Then (Free,Forget) are an adjoint pair. The function

Ψ(X,A) : HomAb(F (X), A)→ HomSets(X,A)

is simply given by f 7→ f |X . The fact that this is a bijection is precisely the state-
ment of Lemma 7.2: any function f : X → A specifies uniquely a homomorphism
f̃ : F (X)→ A.

This also works if we consider Forget as a functor Forget : Groups→ Sets, but in
this case one should define Free : Sets → Groups to be the functor that assigns to a
set X the free group (not the free abelian group!) with basis X.

Here is another more interesting example of a forgetful functor forming an adjoint
pair.

Example 40.16. Let Met denote the category of metric spaces, and let CompleteMet
denote the full subcategory of complete metric spaces. Then there is a forgetful
functor Forget : CompleteMet→ Met that forgets a metric space is complete.

Next, as you all (hopefully) remember, to any metric space (X, d) one can con-
struct a complete metric space (X̄, d̄), called the completion of X, which contains
X as a dense subspace. The completion satisfies the following universal property: if
Y is any complete metric space and f : X → Y is any uniformly continuous func-
tion, then there exists a unique uniformly continuous function f̄ : X̄ → Y such that
f̄ |X = f . Like all universal properties, this tells us X̄ is unique up to isomorphism
in Met (that is, unique up to isometry).

Explicitly, X̄ is constructed as follows. First, let X̂ denote the set of all Cauchy
sequences (xn) in X. Define a pseudometric d̂ on X̂ by declaring

d̂((xn), (x′n)) := lim
n
d(xn, x

′
n)

(this limit exists because R is a complete metric space!) Then let X̄ denote the
quotient of X̂ under the equivalence relation

(xn) ∼ (x′n) ⇔ d̂((xn), (x′n)) = 0.

Then d̂ factors to define a complete metric on X̄. The embedding X ↪→ X̄ sends a
point x to the equivalence class of the constant sequence xn ≡ x.

With a bit more work, one can show that the operation X 7→ X̄ defines a functor
Complete : Met→ CompleteMet, and (Complete,Forget) forms an adjoint pair.

Here is another algebraic example for you to work through on Problem Sheet Q.

Example 40.17. Let R and R′ be rings (not necessarily commutative), and let M be
an (R,R′)-bimodule. Then (�⊗RM,HomR′(M,�)) forms an adjoint pair. Similarly
(M ⊗R′ �,HomR(M,�)) forms an adjoint pair.

An adjoint functor pair gives rise to a unit and a counit as follows.
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Definition 40.18. Let C and D be categories, and let S : C → D and T : D → C be
covariant functors. Suppose (S, T ) is an adjoint pair. For any C ∈ obj(C), taking
D = S(C) in the definition of Ψ(C,D) we obtain a natural bijection

Ψ(C, S(C)) : HomD(S(C), S(C))→ HomC(C, T (S(C)).

We define the unit of (S, T ) to be family of maps η : idC → T ◦ S given by

η(C) := Ψ(C, S(C))(idS(C)) : C → T (S(C)).

If C is any object of C and D is any object of D, then the following unit equation
holds:

Ψ(C,D)(g) = T (g) ◦ η(C), ∀ g : S(C)→ D. (40.2)

This can be seen by considering the diagram (40.1) as follows:

HomD(S(C), S(C)) HomC(C, T (S(C)))

HomD(S(C), D) HomC(C, T (D))

Ψ(C,S(C))

Hom(S(idC),g) Hom(idC ,T (g))

Ψ(C,D)

Start with idS(C) in the top left-hand corner. Then going clockwise yields T (g) ◦
η(C) ◦ idC = T (g) ◦ η(C), and going anticlockwise yields Ψ(C,D)(g), which gives the
unit equation.

Lemma 40.19. The unit is a natural transformation η : idC → T ◦ S.

Proof. To see that η is a natural transformation, we need to check that if f : C → C ′

is any morphism in C then the following diagram commutes:

C T (S(C))

C ′ T (S(C ′))

η(C)

f T (S(f))

η(C′)

The unit equation (40.2) applied with g = S(f) tells us that

Ψ(C, S(C ′))(S(f)) = T (S(f)) ◦ η(C). (40.3)

Now apply (40.1) again as follows:

HomD(S(C ′), S(C ′)) HomC(C ′, T (S(C ′)))

HomD(S(C), S(C ′)) HomC(C, T (S(C ′))).

Ψ(C′,S(C′))

Hom(S(f),idS(C′))) Hom(f,T (idS(C′)))

Ψ(C,S(C′))
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Starting with idS(C′) in the top left-hand corner we obtain

η(C ′) ◦ f = Ψ(C, S(C ′))(S(f)). (40.4)

Combining (40.3) and (40.4) tells us that η(C ′) ◦ f = T (S(f)) ◦ η(C), which is what
we desired.

Definition 40.20. Let C and D be categories, and let S : C → D and T : D → C
be covariant functors. Suppose (S, T ) is an adjoint pair. Given any object D of D,
taking C = T (D) we obtain a natural bijection

Ψ(T (D), D) : HomD(S(T (D)), D)→ HomC(T (D), T (D)),

and this allows us to define the counit of (S, T ) to as the family of maps ε : S ◦T →
idD given by

ε(D) := Ψ(T (D), D)−1(idT (D)) : S(T (D))→ D.

If C is any object of C and D is any object of D, then the following counit equation
holds:

Ψ(C,D)−1(h) = ε(D) ◦ S(h), ∀h : C → T (D). (40.5)

and the same proof as above shows that the counit is a natural transformation S◦T →
idD.

Remark 40.21. The unit equation (40.2) and the counit equation (40.5) uniquely
determine Ψ. Thus to show two functors (S, T ) are an adjoint pair it suffices to
construct the unit and the counit.

The next theorem is one of the main properties of adjoint pairs. This is probably
the only (semi-)difficult theorem in category theory that we will prove in the entire
course.

Theorem 40.22. Let C and D be categories, and let S : C → D and T : D → C be
covariant functors. Suppose (S, T ) is an adjoint pair. Then S preserves colimits and
T preserves limits. That is, if P : J → C is a diagram in C such that colimP exists,
then colim (S ◦ P ) exists as well and there is a natural isomorphism

S(colimP ) ∼= colim (S ◦ P ).

Similarly if Q : J→ D is a diagram in D such that limQ exists, then lim(T ◦Q) exists
as well and there is a natural isomorphism

T (limQ) ∼= lim(T ◦Q).

Proof. We will only prove the colimit statement—the statement about limits is for-
mally dual, and can be obtained by reversing arrows. We will prove the result in four
steps.

1. Let lα : P (α)→ colimP denote the morphisms whose existence is guaranteed
by the colimit property for P . Assume we are given a solution (D, {dα}) for the
diagram S ◦ P : J → D. To show that colim (S ◦ P ) exists an is equal to S(colimP )
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we need to prove the existence of a unique map k : S(colimP ) → D such that the
following diagram commutes for each morphism i : α→ β in J:

S(colimP ) D

S(P (α))

S(P (β))

kα

S(lα) dα

S(P (i))

S(lβ) dβ
(40.6)

Our plan is to apply T to this diagram and use the unit η : idC → T ◦ S to replace
TS(colimP ) and TS(P (α)) with colimP and P (α) respectively. Indeed, naturality
of the unit ( Lemma 40.19) tells us gives us maps η̃ := η(colimP ) : colimP →
TS(colimP ) and maps ηα := η(P (α)) : P (α) → TS(P (α)) such that the following
diagram commutes for every α ∈ obj(J):

P (α) TS(P (α))

colimP TS(colimP )

lα

ηα

TS(lα)

η̃

2. Let us start by applying T to the diagram above and adjoining the original
diagram on the left. This leads to the following monstrosity:

colimP TS(colimP ) T (D)

P (α) TS(P (α))

P (β) TS(P (β))

η̃

h

lα

ηα

P (i)

TS(lα)

TS(P (i))

T (dα)

lβ

ηβ

T (dβ)

(40.7)
The diagram commutes because:

TS(P (i)) ◦ ηα = ηβ ◦ P (i), as η is natural,

T (dα) = T (dβ) ◦ TS(P (i)), as T is a functor.
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The map h : colimP → T (D) exists and is unique because (T (D), {T (dα)}) is a
solution to the diagram P .

3. Let us now define

k := Ψ(colimP,D)−1(h) ∈ HomD(S(colimP ), D). (40.8)

We claim that this choice of k makes the diagram (40.6) commute. Indeed, by (40.1)
the following diagram commutes:

HomD(S(colimP ), D) HomC(colimP, T (D))

HomD(S(P (α)), D) HomC(P (α), T (D))

Hom(S(lα),idD)

Ψ(colimP,D)

Hom(lα,idT (D))

Ψ(P (α),D)

Thus starting with k in the top left-hand corner, going clockwise we obtain h ◦ lα
and going anticlockwise we obtain Ψ(P (α), D)(k ◦ S(lα)). From (40.7) we have

h ◦ lα = T (dα) ◦ ηα

and hence we conclude

T (dα) ◦ ηα = Ψ(P (α), D)(k ◦ S(lα)). (40.9)

Finally we apply the unit equation (40.2) with g = dα to obtain

Ψ(P (α), D)(dα) = T (dα) ◦ ηα.

Combining this equation with (40.9) and applying Ψ(P (α), D)−1 to both sides we
obtain

k ◦ S(lα) = dα.

which is exactly what we wanted.
4. To complete the proof we need to show that k is unique. This follows directly

from the definition (40.8), since h is unique and Ψ(colimP,D) is a bijection.

Remark 40.23. There is a partial converse to Theorem 40.22, called the Freyd Ad-
joint Functor Theorem. We won’t go into the details however, since we will not need
it.

In Lecture 42 we will construct an important adjoint pair of functors on the
category hTop∗.
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LECTURE 41

Group and cogroup objects

In this lecture we study group objects and cogroup objects. We begin with some
more generalities on products and coproducts. Our first result tells us the notation
(f, g) makes sense whenever the relevant (co)product exists.

Proposition 41.1. Let C be a category and let A,B ∈ obj(C).

1. Suppose the product AuB exists. Then for any C ∈ obj(C), there is a natural
bijection

Hom(C,A)×Hom(C,B) ∼= Hom(C,A uB).

2. Suppose the coproduct AtB exists. Then for any C ∈ obj(C), there is a natural
bijection

Hom(A,C)×Hom(B,C) ∼= Hom(A tB,C).

Proof. For C = Sets, the first statement is a formal consequence of Problem Q.3
and Theorem 40.22 (Recall we use × to denote the product in Sets.) The second
statement doesn’t quite fit into the this framework, since Hom(�, C) is contravariant
and Theorem 40.22 only worked with covariant functors.

However in both cases the proof is trivial, and goes as follows (for an arbitrary
C): Given a pair (f, g) ∈ Hom(C,A) × Hom(C,B), the definition of the product as
a limit gives us a unique morphism h : C → A u B such that the following diagram
commutes:

C A

B A uB

f

g
h

lB

lA

The desired isomorphism Hom(C,A) × Hom(C,B) → Hom(C,A u B) is then given
by

(f, g) 7→ h.

To see this is a bijection we define an inverse by sending h : C → AuB to the ordered
pair (lA ◦h, lB ◦h). Finally, to check naturality we must show that that if k : C → D
is any morphism in C then the following commutes:

Hom(C,A)×Hom(C,B) Hom(C,A uB)

Hom(D,A)×Hom(D,B) Hom(D,A uB)

Hom(k,A)×Hom(k,B) Hom(k,AuB)
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This follows readily from the definitions.

From now on we suppress the isomorphism from Proposition 41.1 from our nota-
tion whenever possible. Thus for instance if A,B,C are three objects in a category
and the product AuB exists, then for f ∈ Hom(C,A) and g ∈ Hom(C,B), we denote
by (f, g) the morphism in Hom(C,A u B) corresponding to the ordered pair (f, g)
under the isomorphism form part (1) of Proposition 41.1.

Definition 41.2. Let C be a category. An initial object in C is an object A such
that for every C ∈ obj(C), the set Hom(A,C) contains a single morphism, which we
denote by αC . A terminal object in C is an object Z such that for every C ∈ obj(C),
the set Hom(C,Z) contains a single morphism, which we denote by ωC . An object
is a zero object if it is both an initial object and a terminal object.

It is immediate that if an initial object exists it is unique up to isomorphism (and
similarly for a terminal object). It does not have to be actually unique though: for
instance, in Sets, the empty set is the (unique) initial object, and any set with one
element is a terminal object. Not all categories have initial and terminal objects; the
simplest example is the category of non-empty sets, which does not have an initial
object.

Remark 41.3. One can think of a terminal project as the limit of an empty diagram
(i.e. where the index category has no objects and no morphisms). Similarly one can
think of an initial object as the colimit of an empty diagram. This has the following
nice consequence: if a category C has a terminal object, and the product A u B of
any two objects of C exists, then by induction, one can show that any finite product
A1uA2 · · · uAn exists (n ≥ 0.) Similarly if C has an initial object and the coproduct
AtB of any two objects of C exists, then any finite coproduct A1tA2 · · ·tAn exists
(n ≥ 0.)

Proposition 41.4. Let C be a category.

1. Suppose an initial object A exists and assume binary1 coproducts exist in C.
Then for any C ∈ obj(C), the two “injections” C → AtC and C → C tA (i.e.
the maps induced from the colimits) are isomorphisms.

2. Suppose a terminal object Z exists and assume that binary products exist in
C. Then for any C ∈ obj(C), the two “projections” C uZ → C and Z uC → C
(i.e. the maps induced from the limits) are isomorphisms.

Proof. This time for variety we prove the second statement only. The other is for-
mally dual. Suppose C ∈ obj(C), and denote by λ1 : C uZ → C and λ′1 : C uZ → Z
the maps induced from the limit (thus λ′1 = ωCuZ .) We define an inverse to λ1.
For this let κ1 := (idC , ωC) : C → C u Z, where ωC is the unique morphism to the
terminal object Z. Then clearly λ1 ◦ κ1 = idC . Next, both κ1 ◦ λ1 and idCuZ fit on

1That is, the coproduct of two objects exists.
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the dashed morphism in the following diagram, and hence by the universal property
of a product, they are the same:

C u Z

C Z

C u Z

λ1 λ′1

λ1
ωCuZ

Thus κ1 is an inverse to λ1. The same argument shows that the other projection
λ2 : Z u C → C has inverse κ2 = (ωC , idC).

Definition 41.5. Let C be a category and C ∈ obj(C).

1. Suppose the product CuC exists. We define the diagonal ∆C ∈ Hom(C,CuC)
to be the map corresponding to (idC , idC) ∈ Hom(C,C) × Hom(C,C) in part
(1) of Proposition 41.1.

2. Suppose the coproduct CtC exists. We define the codiagonal ∇C ∈ Hom(Ct
C,C) to be the map corresponding to (idC , idC) ∈ Hom(C,C)×Hom(C,C) in
part (2) of Proposition 41.1.

The next two results are on Problem Sheet Q.

Lemma 41.6. Let C be a category. Suppose A1, A2, B1, B2 ∈ obj(C) are four objects
and fi : Ai → Bi are morphisms for i = 1, 2.

1. If the products A1 u A2 and B1 u B2 exist then there is a unique morphism
f1 u f2 : A1 u A2 → B1 u B2 such that the following diagram commutes for
i = 1, 2, where the vertical maps are those induced from the limit:

A1 uA2 B1 uB2

Ai Bi

f1uf2

fi

(41.1)

2. If the coproducts A1 t A2 and B1 t B2 exist then there is a unique morphism
f1 t f2 : A1 t A2 → B1 t B2 such that the following diagram commutes for
i = 1, 2, where the vertical maps are those induced from the colimit:

Ai Bi

A1 tA2 B1 tB2

fi

f1tf2

(41.2)

Lemma 41.7. Suppose C is a category and B,C1, C2, D ∈ obj(C).

1. Assume the products B u B and C1 u C2 exist. Suppose fi ∈ Hom(B,Ci) for
i = 1, 2. Then

(f1, f2) = (f1 u f2) ◦∆B.
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2. Assume the coproducts DtD and C1 tC2 exist. Suppose gi ∈ Hom(Ci, D) for
i = 1, 2. Then

(g1, g2) = ∇D ◦ (g1 t g2).

Warning: It is important to realise that in general the morphisms (f, g), f u g
and f t g are all different!

Let us now give an alternative way of defining a “group”.

Definition 41.8. Let C be a category that possesses a terminal object Z and finite
products. A group object G ∈ obj(C) is an object G together with multiplication
morphism m : G u G → G and morphisms θ : G → G and e : Z → G such that the
following diagrams commute:

1. Associativity:

G uG uG G uG

G uG G

idGum

muidG m

m

(the notation G uG uG is unambiguous by part (3) of Lemma 40.4.)

2. Identity:

G u Z G uG Z uG

G

idGue

∼=
m

euidG

∼=

(here the diagonal maps are the isomorphisms from part (1) of Proposition
41.1.)

3. Inverse:

G G uG G

Z G Z

(idG,θ)

ωG m

(θ,idG)

ωG

e e

The terminology makes sense, as the following easy examples illustrate.

Example 41.9.

1. A group object in Sets is a group.

2. A group object in Groups (!) is an abelian group2.

3. Every abelian group is a group object in Ab.

4. A group object in Top is a topological group.

2This is because if we work in the category Groups, a morphism between two groups is necessarily
a homomorphism. Thus if G is a group object in Groups then in particular the group inversion map
θ : G→ G is a homomorphism. Since θ(gh) = (gh)−1 = h−1g−1, if θ(gh) = θ(g)θ(h) for all g, h then G is
abelian.
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We will be primarily interested in group objects in the category hTop∗. We will
study these next lecture. For now, let us define the dual notion of a cogroup object.

Definition 41.10. Let C be a category that possesses an initial object A and finite
coproducts. A cogroup object K ∈ obj(C) is an object together with comultipli-
cation morphism µ : K → K tK and morphisms ϑ : K → K and o : K → A such
that the following diagrams commute:

1. Co-associativity:

K K tK

K tK K tK tK

µ

µ

idKtµ

µtidK

2. Co-identity:

K tA K tK A tK

K

idKto otidK

∼=∼=
µ

(here the diagonal maps are the equivalences from part (2) of Proposition 41.1.)

3. Co-inverse:

K K tK K

A K A

(idK ,ϑ) (idK ,ϑ)

αK

o o

µ αK

Cogroup objects are slightly less common “in nature”.

Example 41.11.

1. The only cogroup object in Sets and Top is the empty set.

2. A cogroup object in Groups is a free group (this is fairly easy to prove if G is
finitely generated, and rather harder in general.)

3. Every abelian group is a cogroup object in Ab.

4. The only cogroup objects in Sets∗ and Top∗ are the singletons {?},

As with group objects, we will primarily be interested in cogroup objects in hTop∗.

Here is the main result of today’s lecture. We remind the reader that we use ×
for the product in Sets.

Theorem 41.12. Let C be a category with a terminal object Z and finite products.
An object G ∈ obj(C) is a group object if and only if Hom(�, G) : C→ Sets is actually
a functor3 Hom(�, G) : C → Groups. If this is the case the the group multiplication
m̃(C) on Hom(C,G) is given by

m̃(C) : Hom(C,G)×Hom(C,G)→ Hom(C,G), m̃(C)(f, g) := m◦ (f, g), (41.3)

3This means that Hom(C,G) is a group for each C ∈ obj(G), and if f : A → B is a morphism in C
then Hom(f,G) : Hom(B,G)→ Hom(A,G) is a group homomorphism.

5



where m is the multiplication on G and we are using the identification of Hom(C,G)×
Hom(C,G) with Hom(C,G uG) from part (1) of Proposition 41.1.

The proof will use the following corollary of the Yoneda Lemma (Problem K.5).

Lemma 41.13. Let C be a category, and supposeA,B ∈ obj(C). Suppose Φ: Hom(�, A)→
Hom(�, B) is a natural transformation. Then if C ∈ obj(C) and f ∈ Hom(C,A), one
has

Φ(C)(f) = Φ(A)(idA) ◦ f

(this makes sense as Φ(A)(idA) ∈ Hom(A,B).)

Proof of Theorem 41.12. We will prove the result in four steps.
1. First assume that G is a group object in C. By part (1) of Proposition

41.1, we can identify Hom(C,G) × Hom(C,G) with Hom(C,G u G). If we apply
Hom(C,�) to each of the three diagrams in the definition of a group object, we
see that Hom(C,G) is a group object in Sets, and hence is a group. Now suppose
h : A→ B is a morphism in C. We claim that Hom(h,G) : Hom(B,G)→ Hom(A,G)
is a homomorphism, where the multiplication is given by m̃(B) and m̃(A) respectively,
defined as in (41.3). For this we compute:

Hom(h,G)(m̃(B)(f, g)) = Hom(h,G)(m ◦ (f, g))

= m ◦ (f, g) ◦ h
= m ◦ (f ◦ h, g ◦ h)

= m ◦ (Hom(h,G)(f),Hom(f,G)(g))

= m̃(A)(Hom(h,G)(f),Hom(h,G)(g)).

2. The converse is harder. Assume that G ∈ obj(C) has the property that for
every C ∈ obj(C), there is a group operation m̃(C) : Hom(C,G) × Hom(C,G) →
Hom(C,G). As before we identify Hom(C,G) × Hom(C,G) with Hom(C,G u G).
With this identifcation, we claim that m̃ : Hom(�, GuG)→ Hom(�, G) is a natural
transformation. For this we must check that if f : A → B is a morphism in C then
the following commutes:

Hom(B,G uG) Hom(B,G)

Hom(A,G uG) Hom(A,G)

m̃(B)

Hom(f,GuG) Hom(f,G)

m̃(A)

This however is immediate from the definition.
Thus by the Yoneda Lemma 41.13, for every morphism h : C → G u G in C, we

have
m̃(C)(h) = m ◦ h,

where m ∈ Hom(G uG,G) is defined by

m := m̃(G uG)(idGuG). (41.4)
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3. We now prove that with m defined as in (41.4), the diagram for the associativity
axiom holds. Since Hom(C,G) is a group for every C ∈ obj(C)—and thus in particu-
lar the multiplication m̃(C) satisfies the associativity axiom—we have a commutative
diagram

Hom(C,G)×Hom(C,G)×Hom(C,G) Hom(C,G)×Hom(C,G)

Hom(C,G)×Hom(C,G) Hom(C,G)

m̃(C)×idHom(C,G)

idHom(C,G)×m̃(C) m̃(C)

m̃(C)

Invoking part (1) of Proposition 41.1 again, we can rewrite this diagram as

Hom(C,G uG uG) Hom(C,G uG)

Hom(C,G uG) Hom(C,G)

Then arguing as before, we see that the going clockwise and going anticlockwise
round the square gives rise to two more equal natural transformations:

Hom(�, G uG uG)→ Hom(�, G)

Thus by the Yoneda Lemma again, if k : C → G uG uG is an element belonging to
the top left-hand corner then the image of k in the bottom right-hand corner is of
the form p ◦ k, where:

p =

{
m ◦ (m u idG), going clockwise,

m ◦ (idG um), going anticlockwise.

Taking C = G uG uG and k = idGuGuG it follows that

m ◦ (m u idG) = m ◦ (idG um),

which is what we need for the associativity diagram.
4. Let us now define the two other morphisms θ ∈ Hom(G,G) and e ∈ Hom(Z,G)

needed for G to be a group object. For this, let

θ̃(C) : Hom(C,G)→ Hom(C,G)

denote the inversion in the group Hom(C,G). Then set θ := θ̃(G)(idG). Next, let e
denote the identity element in the group Hom(Z,G). The proof that θ satisfies the
diagram for the identity axiom and that e satisfies the diagram for the inverse axiom
are similar to the proof that m satisfied the diagram for the associativity axiom
(actually they are simpler), and we will leave them as exercises.

The dual result to Theorem 41.12 is the following statement, whose proof is dual
to the one just given.
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Theorem 41.14. Let C be a category with an initial object A and finite coproducts.
An object K ∈ obj(C) is a cogroup object if and only if Hom(K,�) : C → Sets
is actually a functor Hom(K,�) : C → Groups. If this is the case the the group
multiplication m̃(C) on Hom(K,C) is given by

µ̃(C) : Hom(K,C)×Hom(K,C)→ Hom(K,C), µ̃(C)(f, g) := (f, g) ◦ µ,

where µ is the comultiplication onG and we are using the identification of Hom(K,C)×
Hom(K,C) with Hom(K tK,C) from part (2) of Proposition 41.1.

We conclude with a remark that will be useful next lecture.

Definition 41.15. Let C be a category with a terminal object Z. A morphism
c : C → D in C is called a constant morphism if it factors through Z, that is, there
exists a morphism c′ : Z → D such that the following commutes:

C D

Z

c

ωC c′

Similarly if C has an initial object A a morphism k : C → D is a coconstant mor-
phism if there exists a morphism k′ : C → A such that the following commutes:

A

C D

αD

k

k′

Remark 41.16. One can recast the definition of a group object using constant mor-
phisms. This point of view is less convenient for Theorem 41.12, but will prove more
natural in the context of the group objects in hTop∗ that we will study next lecture.

Here are the details. Suppose G is a group object in a category C. We use
the notation from the proof of Proposition 41.4 for the projections λ1 : G u Z → G
and λ2 : Z u G → G, together with their inverses κ1 and κ2. Define morphisms
j1, j2 : G→ G uG by

j1 := (idG u e) ◦ κ1, j2 := (e u idG) ◦ κ2.

Then we can enlarge the identity axiom diagram to see that the following commutes:

G G

G u Z G uG Z uG

G

j1
κ1

j2
κ2

idGue

λ1

m

euidG

λ2
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Since λi ◦ κi = idG, we see that

m ◦ j1 = idG, m ◦ j2 = idG. (41.5)

Moreover there exists a constant map c : G→ G such that

j1 = (idG, c), j2 = (c, idG). (41.6)

Conversely, if we are given a category C and an object G, together with a morphism
m : GuG→ G that satisfies the diagram for the associativity axiom and a morphism
θ : G→ G such that:

1. m ◦ (idG, θ) = m ◦ (θ, idG) are equal constant morphisms,

2. if j1 and j2 are defined as in (41.6) with c = m ◦ (idG, θ) then (41.5) holds,

then G is a group object. A similar discussion applies to cogroup objects.
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LECTURE 42

Loop spaces and reduced suspensions

In this lecture we investigate group and cogroup objects in the category hTop∗. We
begin however with an interlude on some point-set topology about function spaces.
As with all other point-set topology results, we won’t prove them, since the ideas
involved have nothing to do with algebraic topology.

Definition 42.1. Let X and Y denote the topological spaces, and write XY for the
set of all continuous functions1 from Y into X. Define a topology on XY , called the
compact-open topology by declaring that a subbasis2 is all the sets of the form

(K;U) :=
{
f ∈ XY | f(K) ⊂ U

}
,

where K ⊂ Y is compact and U ⊂ X is open.

If X is a metric space then the compact-open topology on XY (for any Y ) coin-
cides with the topology of uniform convergence on compact subsets.

Definition 42.2. Let X and Y be sets. Define the evaluation map

ev : HomSets(Y,X)× Y → X

by
ev(f, y) := f(y)

(here HomSets(Y,X) denotes the set of all functions from Y to X).

The first nice property of the compact-open topology is the following:

Proposition 42.3. Let X and Y be topological spaces, and assume that Y is locally
compact and Hausdorff. Then the restriction of ev to XY × Y defines a continuous
map ev : XY × Y → X.

Definition 42.4. Suppose X, Y and Z are sets. If ζ : Z × Y → X is an element of
HomSets(Z × Y,X), define

ζ] : Z → HomSets(Y,X), ζ](z)(y) := ζ(z, y).

Similarly if ϕ : Z → HomSets(Y,X), define

ϕ[ : Z × Y → X, ϕ[(z, y) := ϕ(z)(y).

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
1We use this notation instead of the more common C(Y,X) or C0(Y,X) since these are too easy to

confuse with the singular (co)chain complex!
2This means that the compact-open topology is the smallest topology containing all sets of this form.
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It is immediate that in the category Sets, the correspondence ζ 7→ ζ] defines a
bijection

HomSets(Z × Y,X)→ HomSets (Z,HomSets(Y,X))

(the inverse is given by ϕ 7→ ϕ[). This result is called the Exponential Law for
sets. It is much less trivial that the same result holds for topological spaces, provided
Y and Z are Hausdorff, Y is locally compact, and we work with the compact-open
topology.

Theorem 42.5 (Exponential Law). Let X, Y and Z be topological spaces.

1. Assume that Y is locally compact and Hausdorff. Then the operation ζ 7→ ζ]

defines a bijection
XZ×Y → (XY )Z ,

with inverse given by ϕ 7→ ϕ[.

2. If instead we assume that Z is Hausdorff (and no assumptions on Y ) then the
map ζ 7→ ζ] is continuous in the compact-open topology.

3. If both conditions are fulfilled, i.e. if Y is locally compact Hausdorff and Z is
Hausdorff, then the map ζ 7→ ζ] is also an open map, and thus a homeomor-
phism.

For us, the most useful corollary of (part (1) of) Theorem 42.5 is the following.

Corollary 42.6. Let X, Y and Z be spaces, and assume that Y is locally compact
and Hausdorff. A function ϕ : Z → XY is continuous if and only if the composition
ev ◦ (ϕ× idY ) is continuous:

Z × Y ϕ×idY−−−−→ XY × Y ev−→ X

Indeed, denoting the composition by ζ, one has ϕ = ζ], so the corollary follows
from Theorem 42.5.

Remark 42.7. Suppose f, g : X → Y are homotopic, where X is locally compact and
Hausdorff. If we think of a homotopy F : f ' g as a map F : I × X → Y (instead
of the more usual X × I → Y ) then F ] : I → Y X is a path in Y X from f to g.
Conversely every such path determines a homotopy. Thus [X,Y ] = π0(Y X).

Remark 42.8. The first statement of Theorem 42.5 can be alternatively phrased as
follows: if Y is a locally compact Hausdorff space then (�× Y,�Y ) form an adjoint
pair on Top.

Recall from Lecture 4 that an object of hTop∗ is a pair (X,x) where X is a topo-
logical space and x ∈ X is the basepoint. A morphism [f ] from (X,x) to (Y, y) is a
homotopy class of pointed maps f : (X,x)→ (Y, y), where the homotopies are taken
relative to x.

Let us begin in Top∗.
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Lemma 42.9. The category Top∗ has a zero object. It has finite products and co-
products.

Proof. Let ∗ be a space with one point. Then (∗, ∗) (as a pointed space) is a zero
object in Top∗. If (Xi, xi) are two pointed spaces then (X1 × X2, (x1, x2)) is the
product and the wedge (X1∨X2, (x1, x2)) (cf. Definition 18.10) is the coproduct.

Remark 42.10. The wedge (X1 ∨X2, (x1, x2)) is homeomorphic to the subset (X1×
{x2}) ∪ ({x1} ×X2) of (X1 ×X2, (x1, x2)). Thus in Top∗, the coproduct can always
be embedded in the product. This is not true in general. For instance, in Groups, if
G1 and G2 are finite groups then their product is the direct product (which is also
finite), but their coproduct is the free product (which is infinite if G1 and G2 both
have more than one element.)

In general there is no easy way to pass from (co)limits in a category C to (co)limits
in a quotient category of C. However in the case of hTop∗ it is easy to see that the
same constructions work. Thus (∗, ∗) is a zero object, the product is the normal
cartesian product and the coproduct is the wedge. Indeed, if Fi : fi ' gi is a pointed
homotopy Y × I → Xi then (F1, F2) : Y × I → X1 × X2 is a pointed homotopy
(f1, f2) ' (g1, g2). This shows that (X1 × X2, (x1, x2)) also solves the universal
property for a product in hTop∗, and the other statements follow similarly. Thus:

Corollary 42.11. The category hTop∗ has a zero object. It has finite products and
coproducts.

Notation: For the rest of this lecture (and indeed, the rest of the course) we
will almost exclusively be concerned with hTop∗. However, constantly displaying the
basepoint is cumbersome (for instance, it stops commutative diagrams from fitting
onto the page). Thus we will often omit it from the notation, and so a pointed space
(X,x) will often (but not always) be written simply as X. When talking about Top∗
and hTop∗, all maps are implicitly assumed to be pointed, even if the notation does
not reflect this.

This notation applies in particular to morphism sets in hTop∗. If X and Y are
two pointed spaces then we will write [X,Y ]∗ for the set of pointed maps from X to
Y .

Definition 42.12. A pointed space (X,x0) is a H-group if there are continuous
pointed maps m : X ×X → X and θ : X → X together with pointed homotopies

m ◦ (idX ×m) ' m ◦ (m× idX), rel x0,

and
m ◦ j1 ' idX ' m ◦ j2, rel x0, (42.1)

where ji : X → X × X is the pointed “injection” given by j1(x) := (x, x0) and
j2(x) := (x0, x), and finally such that

m ◦ (idX , θ) ' c ' m ◦ (θ, idX), rel x0,

where c : X → X is the constant map at x0.
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For the dual definition, let us first fix notation. We identify the pointed wedge
X∨X with the subspace (X×{x0})∪({x0}×X) of X×X, and denote by qi : X∨X →
X the restriction of the projection pi : X × X → X to X ∨ X ⊂ X × X. Thus
q1(x, x0) = x = q2(x0, x) for all x ∈ X. Recall also from the end of Lecture 20 that if

f : (X,x0)→ (Z, z0), g : (Y, y0)→ (Z, z0)

are two pointed continuous maps, there is a well-defined pointed continuous map

f ∨ g : X ∨ Y → Z ∨ Z

defined by

(f ∨ g)(x, y) :=

{
(f(x), z0), y = y0,

(z0, g(y)), x = x0.

(Thus ∨ coincides with the t notation used in the last lecture (41.2) for the coprod-
uct.)

Definition 42.13. A pointed space (X,x0) is a H-cogroup if there are continuous
pointed maps µ : X → X ∨X and ϑ : X → X together with pointed homotopies

(idX ∨ µ) ◦ µ ' (µ ∨ idX) ◦ µ,

and
q1 ◦ µ ' idX ' q2 ◦ µ,

and finally such that
(idX , ϑ) ◦ µ ' c ' (ϑ, idX) ◦ µ,

where c : X → X is the constant map at x0.

The next result is just rephrasing the definitions.

Proposition 42.14. The group objects in hTop∗ are the H-groups. The cogroup
objects in hTop∗ are the H-cogroups.

Proof. This is immediate from Remark 41.16, since the constant map c : X → X
at x0 is the desired constant (and coconstant) morphism from (X,x0) to itself in
hTop∗.

Remark 42.15. There is a weaker notion of an H-group, which is (rather unhelpfully
called) an H-space. This is a pointed space (X,x0) together with a continuous
pointed map m : X × X → X such that both x 7→ m(x, x0) and x 7→ m(x0, x) are
homotopic to the identity relative to x0. In Problem C.5 you proved that an H-space
has abelian fundamental group. Similarly there is a weaker notion of an H-cogroup,
where one only insists that the comultiplication is homotopic to the identity relative
to the basepoint in both variables, and this is called an H-cospace.

Definition 42.16. Let (X,x0) be a pointed space. The loop space of (X,x0) is the
pointed space

Ω(X,x0) :=
{
u ∈ XI | u(0) = u(1) = x0

}
,

where the basepoint is the constant path at x0.
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We often write ΩX instead of Ω(X,x0) (this is somewhat naughty, as the loop
space does depend on the choice of x0).

Theorem 42.17. Loop space defines a functor Ω: hTop∗ → hTop∗.

Proof. It suffices by Problem A.3 to show that there is a functor Ω: Top∗ → Top∗
that has the property that if f ' g (via a pointed homotopy) then Ω(f) ' Ω(g). If
f : (X,x0) → (Y, y0), define Ω(f) : Ω(X,x0) → Ω(Y, y0) by u 7→ f ◦ u. We need to
check is that Ω(f) is continuous. Since Ω(X,x0) is a subspace of XI , it suffices to
show that u 7→ f ◦u is continuous as a map XI → Y I (this is not completely trivial!)
For this consider the commutative diagram

XI × I Y I × I

X Y

(u,s)7→(f◦u,s)

ev ev

f

Since I is locally compact and Hausdorff, both maps ev are continuous. Thus going
anti-clockwise is continuous around the square, and hence going clockwise is contin-
uous. Thus u 7→ f ◦ u is continuous by Corollary 42.6.

Suppose now f, g : (X,x0) → (Y, y0) are pointed continuous maps and F : f ' g
is a homotopy rel x0. Define G : ΩX × I → ΩY by G(u, t) := F (u(·), t), and define
r : XI × I × I → XI × I × I by r(u, t, s) = (u, s, t). Then r is (obviously) continuous,
and we have a commutative diagram

XI × I × I Y I × I

X × I Y

G×idI

(ev×idI)◦r ev

F

Starting in the top left-hand corner and going anticlockwise is continuous (since ev is
continuous)—this is just the map (u, t, s) 7→ F (u(s), t)), and hence ev◦(G×idI) is also
continuous. Thus by Corollary 42.6 again, G is continuous. Since G : Ω(f) ' Ω(g),
the proof is complete.

Theorem 42.18. If (X,x0) is a pointed space then Ω(X,x0) is an H-group.

Proof. As in Definition 3.9, we define m : ΩX × ΩX → ΩX by

m(u, v) := u ∗ v, (u ∗ v)(s) :=

{
u(2s), 0 ≤ s ≤ 1

2 ,

v(2s− 1), 1
2 ≤ s ≤ 1.

To prove that m is continuous, consider the composition

ΩX × ΩX × I m×idI−−−−→ ΩX × I ev−→ X.

On ΩX × ΩX × [0, 1/2], this agrees with the composition

ΩX × ΩX × [0, 1/2]
π′×2−−−→ ΩX × I ev−→ X,
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where π′ : ΩX×ΩX → ΩX is projection on the first factor and 2: [0, 1/2]→ I is the
map s 7→ 2s. This composition is continuous, and hence on ΩX × ΩX × [0, 1/2] the
composition ev◦(m× idI) is continuous. A similar argument shows that ev◦(m× idI)
is continuous on ΩX × ΩX × [1/2, 1]. Thus by Corollary 42.6, we see that m is
continuous.

Now let us prove that m satisfies the homotopy associativity requirement. This
argument is basically the same as Proposition 3.17, we just need to be a little more
careful about checking everything really is continuous. Consider first the function

H : ΩX × ΩX × ΩX × I × I → X

given by

H(u, v, w, t, s) :=


u
(

4s
t+1

)
, 0 ≤ s ≤ t+1

4 ,

v(4s− t− 1), t+1
4 ≤ s ≤

t+2
4 ,

w
(

4s−2−t
2−t

)
, t+2

4 ≤ s ≤ 1.

By Corollary 42.6, F := H] is a continuous function ΩX ×ΩX ×ΩX × I → ΩX. By
construction F is a pointed homotopy m ◦ (m× idΩX) ' m ◦ (idΩX ◦m).

As in Definition 3.15, let e0 ∈ ΩX denote the constant path at x0. Define E : ΩX×
I → ΩX by E(u, t) := ut, where

ut(s) :=

{
u
(

2s
t+1

)
, 0 ≤ s ≤ t+1

2 ,

x0,
t+1

2 ≤ s ≤ 1.

Then E is continuous as ev ◦ (E × idI) is, and hence E is a homotopy from the
m ◦ j1 : u 7→ u ∗ e0 to the identity. A similar argument shows that m ◦ j2 : u 7→ e0 ∗ u
is homotopic to the identity.

Finally, define θ : ΩX → ΩX, θ(u) = ū, where as in Definition 3.14, ū(s) :=
u(1− s). If K : ΩX × I × I → X is defined by

K(u, t, s) :=


x0, 0 ≤ s ≤ t

2 ,

u(2s− t), t
2 ≤ s ≤

1
2 ,

u(2− 2s− t), 1
2 ≤ s ≤

2−t
2 ,

x0,
2−t

2 ≤ s ≤ 1,

then K] is continuous (by Corollary 42.6 again), and defines a pointed nullhomotopy
for u 7→ m(u, θ(u)). Similarly u 7→ m(θ(u), u) is nullhomotopic. This completes the
proof.

Corollary 42.19. For any pointed space X, there is a contravariant functor

[�,ΩX]∗ : hTop∗ → Groups.

If Y is another pointed space and [ϕ], [ψ] ∈ [Y,ΩX]∗ then their product is m̃(Y )([ϕ], [ψ]) :=
[ϕ ∗ ψ].
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Proof. Proposition 42.14 and Theorem 42.18 tell us that ΩX is a group object in
hTop∗. Thus Theorem 41.12 tells us that [�,ΩX]∗ takes values in Groups, and (41.3)
gives the group multiplication.

How about H-cogroups? These are the so-called reduced suspensions. The sus-
pension SX of a topological space X is the quotient space of X×I where we identify
X × {0} and X × {1} to a point. The reduced suspension is the pointed version of
this:

Definition 42.20. Let (X,x0) be a pointed space. Define the reduced suspension

ΣX :=
(
X × I

)/(
(X × ∂I) ∪ ({x0} × I)

)
.

We think of ΣX as a pointed space, where the basepoint is the identified subset. See
Figure 42.1

Figure 42.1: The suspension SX and the reduced suspension ΣX.

We will write [x, t] for the equivalence class of (x, t) ∈ X × I in ΣX. By a slighty
abuse of notation we write simply x0 instead of [x0, t] for the basepoint.

Theorem 42.21. Reduced suspension defines a functor Σ: hTop∗ → hTop∗.

Proof. Once again, by Problem A.3, it suffices to show that Σ defines a functor on
Top∗ that respects pointed homotopies. If f : (X,x0)→ (Y, y0), define Σ(f) : ΣX →
ΣY by Σ(f)[x, t] := [f(x), t]. The fact that Σ respects pointed homotopies is a
consequence of general fact that if f, g : (W,W ′)→ (Z,Z ′) are maps of pairs that are
homotopic through maps of pairs, then the induced maps (W/W ′, ∗)→ (Z/Z ′, ∗) are
also homotopic.

We could prove directly that ΣX is always a H-cogroup, but instead we will give
a pleasing argument using Theorem 40.22 and Theorem 41.16.

Theorem 42.22. (Σ,Ω) form an adjoint pair on hTop∗.
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Proof. We want to define a natural bijection

Ψ(X,Y ) : [ΣX,Y ]∗ 7→ [X,ΩY ]∗.

Let the basepoints of X and Y be x0 and y0 respectively. We start from the obser-
vation that if we restrict the (inverse) of the bijection given by the Exponential Law
(Theorem 42.5):

ϕ : X → Y I 7→ ϕ[ : X × I → Y

to those ϕ such that ϕ(x0) is the constant loop at y0 and ϕ(x)(0) = y0 = ϕ(x)(1) for
all x ∈ X then ϕ[(x, 0) = ϕ[(x, 1) = y0 = ϕ[(x0, t). In other words, if ϕ : (X,x0) →
Ω(Y, y0) is a pointed map, then ϕ[ factors to define a map (ΣX,x0)→ (Y, y0). Thus
we have bijections

Ψ̃(X,Y ) : HomTop∗((ΣX,x0), (Y, y0))→ HomTop∗((X,x0),Ω(Y, y0))

given by ζ 7→ ζ] (with inverse ϕ 7→ ϕ[.)
Similarly a pointed homotopy ΣX × I → Y determines (and is determined by) a

pointed homotopy X× I → ΩY . Thus Ψ̃(X,Y ) induces a bijection on the homotopy
classes. The fact that the required diagrams commute to make Ψ natural is immediate
from the definitions.

Our final result needs a preliminary lemma.

Lemma 42.23. Let C be a category with a terminal object and finite products. Sup-
pose G,G′ are two group objects in C with multiplications m and m′ respectively,
and suppose h ∈ Hom(G,G′) is a morphism with the property that

h ◦m = m′ ◦ (h u h). (42.2)

Then for any object C of C, the map Hom(C, h) : Hom(C,G) → Hom(C,G′) is a
group homomorphism (note both Hom(C,G) and Hom(C,G′) are groups by Theorem
41.12.)

Proof. The proof is almost the same as the proof of the easy half of Theorem 41.12.
Denote by m̃(C) and m̃′(C) the group multiplications on Hom(C,G) and Hom(C,G′)
respectively (as defined in (41.3).) Then if f, g ∈ Hom(C,G) we have

Hom(C, h)(m̃(C)(f, g)) = Hom(C, h)(m(f, g))

= h ◦m ◦ (f, g)

(?)
= m′ ◦ (h ◦ f, h ◦ g)

= m̃′(C)(h ◦ f, h ◦ g)

= m̃′(C)(Hom(C, h)(f),Hom(C, h)(g)),

where (?) used the hypothesis (42.2).

Corollary 42.24. If X is a pointed space then ΣX is a cogroup object in hTop∗.
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Proof. By Theorem 41.14, we need only prove that the functor [ΣX,�]∗ takes val-
ues in Groups. Let Y be a pointed space. By Theorem 42.22, there is a bijection
Ψ(X,Y ) : [ΣX,Y ]∗ 7→ [X,ΩY ]∗ given by ζ 7→ ζ]. By Corollary 42.19 the set [X,ΩY ]∗
is a group, and we can use this to define a group structure on [ΣX,Y ]∗ by

µ̃(Y )([ζ], [ξ]) := Ψ(X,Y )−1[ζ] ∗ ξ]].

It remains to show that if f : Y → Z is continuous then the induced map [ΣX,Y ]∗ →
[ΣX,Z]∗ is a homomorphism. For this we consider the adjoint diagram:

[ΣX,Y ]∗ [X,ΩY ]∗

[ΣX,Z]∗ [X,ΩZ]∗

Ψ(X,Y )

Hom(idΣX ,f) Hom(idX ,Ω(f))

Ψ(X,Z)

The map Ω(f) : ΩY → ΩZ satisfies the hypothesis (42.2) in Lemma 42.23, since
Ω(f)(u∗v) = (f ◦u)∗ (f ◦v) by definition. Thus Lemma 42.23 tells us that the right-
hand vertical map is a homomorphism. Since the horizontal maps are isomorphisms,
the left-hand vertical map is also a homomorphism. The proof is complete.

Remark 42.25. It is sometimes useful to know an explicit formula for the comulti-
plication µ : ΣX → ΣX∨ΣX (we would have needed this in order to prove Corollary
42.24 directly). The formula is:

µ([x, t]) :=

{
([x, 2t], ∗), 0 ≤ t ≤ 1/2,

(∗, [x, 2t− 1]), 1/2 ≤ t ≤ 1.

Thus µ is “pinching” the reduced suspension. See Figure 42.2. For X = Sn this is
the same as the map we called “Pinch” at the end of Lecture 20.

Figure 42.2: The comulitplication µ.
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LECTURE 43

Higher homotopy groups

In this lecture we finally get round to defining the higher homotopy groups. Let
us regard Sn as subspace of Rn+1 in the usual way. We choose the point ∗ :=
(1, 0, . . . , 0) ∈ Sn for our basepoint (although we will almost always omit this form
the notation.)

Definition 43.1. Given a pointed space (X,x0) and an integer n ≥ 0, we define the
nth homotopy group

πn(X,x0) := [(Sn, ∗), (X,x0)] = [Sn, X]∗.

For n = 1, this is the none other than the fundamental group—the equivalence
between this definition and our original one (Definition 4.1) was shown in Problem
B.5. For n = 0, it is clear that π0(X,x0) is the set π0(X) from Definition 3.6, where
the basepoint is chosen to be the path component of X containing x0. For n ≥ 2 one
usually calls πn(X,x0) a higher homotopy group. Of course, the word “group”
needs justifying:

Proposition 43.2. For every pointed space (X,x0), π0(X,X0) is a pointed set, and
for every n ≥ 1, πn(X,x0) is a group.

Proof. Problem Q.7 tells us that Sn is a cogroup object in hTop∗ for all n ≥ 1. Thus
Theorem 41.14 tells us that [Sn,�]∗ takes values in Groups for all n ≥ 1.

In fact, for n ≥ 2 the group πn(X,x0) is always abelian, as we will shortly prove.
In the following, whenever possible we will start to omit the basepoint from our
notation and just write πn(X) instead of πn(X,x0). As with all our other “basepoint-
omitting” conventions, this is somewhat imprecise. However as we will see below, if
x0 and x1 lie in the same path component of X then there is always an isomorphism
πn(X,x0) ∼= πn(X,x1).

Proposition 43.3. Suppose X is an H-cogroup and Y is H-group. Then the two
group operations on [X,Y ]∗ (one coming from the comultiplication µ on X and one
coming from the multiplication m on Y ) coincide.

Proof. Let ξX : X ∨ X ↪→ X × X denote the inclusion, where as usual we think of
X ∨ X as the subspace (X × {x0}) ∪ ({x0} × X) of X × X, and let ξY be defined
similarly. Let f, g : (X,x0)→ (Y, y0) be pointed maps. By Problem Q.6 the following
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diagram commutes up to homotopy:

X X ∨X Y ∨ Y

X ×X Y × Y Y

µ

∆X
ξX

f∨g

ξY
∇Y

f×g m

The group multiplication determined by m is given by

[f ] ∗m [g] := [m ◦ (f, g)]

= [m ◦ (f × g) ◦∆X ]

(using part (1) of Problem Q.5). The group multiplication determined by µ is given
by

[f ] ∗µ [g] := [(f, g) ◦ µ]

= [∇Y ◦ (f ∨ g) ◦ µ]

(using part (2) of Problem Q.5). Thus commutativity of the diagram above (up to
homotopy) tells us that

[f ] ∗m [g] = [f ] ∗µ [g]

as required.

We can now prove:

Theorem 43.4. If X is a pointed space and 1 ≤ k < n, one has

πn(X) ∼= πn−k(Ω
kX),

where Ωk is the composition of Ω with itself k times.

Proof. By Problem Q.7 and Theorem 42.22 and Proposition 43.3, applied repeatedly,
we have

πn(X) = [Sn, X]∗

= [ΣnS0, X]∗

= [Σn−kS0,ΩkX]∗

= [Sn−k,ΩkX]∗

= πn−k(Ω
kX).

Corollary 43.5. If n ≥ 2 then πn(X) is always abelian.

Proof. By Theorem 43.4 for n ≥ 2 we have πn(X) ∼= π1(Ωn−1X). Since Ωn−1X is
an H-group by Theorem 42.18, it is also in particular an H-space (Remark 42.15).
Thus by Problem C.5, π1(Ωn−1X) is abelian.
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Let us now give another proof of Corollary 43.5 that does not use Problem C.5.
This starts from the following statement.

The following easy piece of algebra is on Problem Sheet R.

Lemma 43.6. Let A be a set, and assume A is equipped with two binary operations
∗ and ◦ such that:

1. ∗ and ◦ have a common two-sided unit,

2. ∗ and ◦ are mutually distributive, that is,

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d), ∀ a, b, c, d ∈ A.

Then ∗ and ◦ coincide and each is commutative and associative.

This gives us the desired second proof of Corollary 43.5:

Second proof of Corollary 43.5. As in the proof of Theorem 43.4, we have

πn(X) ∼= [ΣSn−2,ΩX]∗

for n ≥ 2. The proof of Proposition 43.3 tells us the that the hypotheses of Lemma
43.6 are satisfied. Indeed, the constant map is the desired two-sided identity, and to
check mutual distributivity we observe:1(

[f ] ∗m [g]
)
∗µ
(
[h] ∗m [k]

)
=
[
m ◦ (f × g) ◦∆X

]
∗µ
[
m ◦ (h× k) ◦∆X

]
=
[
∇Y ◦

(
m ◦ (f × g) ◦∆X

)
∨
(
m ◦ (h× k) ◦∆X

)
◦ µ
]

=
[
m ◦

(
(m ◦ (f × g) ◦∆X)× (m ◦ (h× k) ◦∆X)

)
◦∆X

]
=
[
m ◦

(
(∇Y ◦ (f ∨ g) ◦ µ)× (∇Y ◦ (h ∨ k) ◦ µ)

)
◦∆X

]
=
[
∇Y ◦ (f ∨ g) ◦ µ

]
∗m
[
∇Y ◦ (h ∨ k) ◦ µ

]
=
(
[f ] ∗µ [g]

)
∗m
(
[h] ∗µ [k]

)
.

Thus πn is a functor hTop∗ → Sets for n = 0, hTop∗ → Groups for n = 1, and
hTop∗ → Ab for n ≥ 2. Explicitly, if f : (X,x0)→ (Y, y0) is a pointed map, then

πn(f) : πn(X,x0)→ πn(Y, y0), [u] 7→ [f ◦ u].

We will see that these functors satisfy pointed versions of most of the Eilenberg-
Steenrod axioms (the homotopy axiom is immediate from the fact that we have
defined these functors on hTop∗). We will prove the dimension axiom below. Next
lecture we will prove the long exact sequence axiom. The excision axiom does not
hold in general (in Lecture 46 we will discuss the Blakers-Massey Theorem, which
gives conditions for excision to hold.)

Proposition 43.7 (The dimension axiom). If X is a one point space then πn(X) = 0
for all n ≥ 0.

1Thanks to Raccoon for this computation!
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Proof. There is only one function Sn → ∗, and thus [Sn, ∗]∗ only has one element.

Let us now discuss a more straightforward approach to defining the higher ho-
motopy groups. This approach is less conceptually satisfying than the one we gave
above, but it has the advantage of giving us explicit formulae, which will be helpful
in further computations. Let us denote by In the unit cube [0, 1]n and by ∂In its
boundary:

∂In = {(s1, . . . , sn) ∈ In | at least one si is equal to 0 or 1} .

The following result should now be straightforward for all of you.

Lemma 43.8. If n ≥ 1 then there exists a homeomorphism τ : In
/
∂In → Sn. If n ≥ 2

then one can build a homeomorphism σ : In
/
∂In → ΣSn−1 from τ via

σ : [s1, . . . , sn] 7→ [τ [s1, . . . , sn−1], sn].

A pointed function u : (In, ∂In) → (X,x0) induces a pointed map ū : In
/
∂In →

X. If two such maps u, v are homotopic rel ∂In then there is a pointed homotopy
ū ' v̄. It follows that there is a bijection

J : [(In, ∂In), (X,x0)]→ [(ΣSn−1, ∗), (X,x0)] = πn(X,x0), J [u] := [ū ◦ σ−1].

This allows us to endow [(In, ∂In), (X,x0)] with a group structure, and—more importantly—
it gives us an explicit formula for the group addition:

(u+ v)(s1, . . . , sn) :=

{
u(s1, . . . , sn−1, 2sn), 0 ≤ sn ≤ 1/2,

v(s1, . . . , sn−1, 2sn − 1), 1/2 ≤ sn ≤ 1.

Of course, for n = 1 this is just the usual concatenation of paths. We use the notation
u+ v instead of u ∗ v for n ≥ 2 to emphasise that this is an abelian group operation.
The formula also gives the a third “picture proof” (Figure 43.1) that πn(X) is abelian
for n ≥ 2, where the shaded regions are places where the homotopy is constant.

We now aim to prove the aforementioned statement that if X is path connected
then πn(X,x0) ∼= πn(X,x1) for any two points x0, x1 ∈ X. The main result of today’s
lecture is the following theorem. Recall Π(X) denotes the fundamental groupoid of
X, whose objects are the points of x and whose morphisms are the path classes (cf.
Proposition 3.18).

Theorem 43.9. Let X be path connected. Then for all n ≥ 1, there is a covariant
functor T : Π(X)→ Groups.

Remark 43.10. In general a functor T : Π(X)→ Groups is said to be a local system
of groups on X. (Similarly a functor T : Π(X) → Rings is a local system of rings.)
Thus Theorem 43.9 says that the homotopy groups form a local system. Note also
that in the case n = 1 the theorem is immediate from the definition, since π1(X,x)
is to the morphism set HomΠ(X)(x, x).
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Figure 43.1: Proof that π2 is abelian.

The proof of Theorem 43.9 will take some time. We begin with a collection of
preliminary results. In order to keep the notation transparent, for the rest of this
lecture the letters u, v represent elements of πn and the letters w, z represent elements
of π1 (the reason for this distinction will shortly become clear).

Definition 43.11. Suppose U : In× I → X is a free homotopy. Let 0 = (0, 0, . . . , 0)
denote the origin in In. Then w(t) := U(0, t) is a path I → X. We say that U is a
homotopy along w. If in addition U(x, t) = w(t) for all x ∈ ∂In then we say that U
is a level homotopy along w. Thus U is a homotopy relative to ∂In if and only if
U is a level homotopy along the constant path at U(0, 0).

Definition 43.12. Define a stereographic retraction

r : In × I →
(
In × {0}

)
∪
(
∂In × I

)
(43.1)

as follows. Think of In× I as being embedded in Rn+1, and let N denote the “north
star”, which for us will be the point N = (1/2, . . . , 1/2, , 2) ∈ Rn+1. Now if y ∈ In×I,
consider the line from N to y. This intersects

(
In × {0}

)
∪
(
∂In × I

)
in a unique

point, which we call r(y).
For n = 2 this is easy to picture—the right-hand side is a “box” without a lid.

Think of the north star as floating above the box and illuminating the contents.
Given a point y in the cube, the light beam from the north star intersects the box in
a unique point, and this is r(y).

Let us also denote by R the analogously defined stereographic retraction

R : In × I × I →
(
In × I × {0}

)
∪
(
∂In × I × I

)
, (43.2)

where we multiply both sides by another factor I.

To keep the notation concise, let us temporarily denote by P (X,x0) the space of
all continuous maps u : (In, ∂In)→ (X,x0). If w is a path in X from x0 to x1 and u
is an element of P (X,x0), then we can “glue” them together to form an element of
P (X,x1) as follows:
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1. Firstly define U ′ :
(
In × {0}

)
∪
(
∂In × I

)
→ X by setting

U ′(x, 0) = u(x), x ∈ In

and
U ′(x, s) = w(s), (x, s) ∈ ∂In × I.

This does indeed define a continuous function on In×I →
(
In×{0}

)
∪
(
∂In×I

)
since u ∈ P (X,x0). (Here we are using the Gluing Lemma 2.2.)

2. Now set U := U ′ ◦ r : In × I → X. Then U is a level homotopy along w with
U(·, 0) = u.

3. Finally define tw(u) := U(·, 1). Then tw(u) belongs to P (X,x1), and we obtain
a map

tw : P (X,x0)→ P (X,x1), u 7→ tw(u).

Note that (by construction) U is a level homotopy u ' tw(u) along w.

The following lemma explains why this construction is useful. It tells us that a level
homotopy along a contractible loop can be changed into a relative homotopy (i.e. a
level homotopy along a constant loop.)

Lemma 43.13. Suppose w is a loop in X based at x0 which is nullhomotopic rel ∂I
(thus [w] = 0 ∈ π1(X,x0).) Suppose U : u ' v is a level homotopy along w. Then
u ' v rel ∂In.

Proof. Let W : I × I → X be a homotopy rel ∂I from w to the constant loop at x0.
We glue W and U together to define a function

V ′ :
(
In × I × {0}

)
×
(
∂In × I × I

)
→ X

by
V ′(x, t, 0) = U(x, t), (x, t) ∈ In × I,

and
V ′(x, t, s) = W (t, s), (x, t, s) ∈ ∂In × I × I.

The function V ′ is continuous because the two definitions agree on the overlap ∂In×
I×{0}, since U is a level homotopy. Now set V := V ′◦R, where R is the stereographic
retraction from (43.2). We now build from V a new homotopy Q by setting:

Q(x, t) :=


V (x, 0, 4t), 0 ≤ t ≤ 1

4 ,

V (x, 4t− 1, 1), 1
4 ≤ t ≤

1
2 ,

V (x, 1, 2− 2t), 1
2 ≤ t ≤ 1.

Again, Q is continuous by the Gluing Lemma 2.2. Since

Q(x, 0) = V (x, 0, 0) = U(x, 0) = u(x), Q(x, 1) = V (x, 1, 0) = U(x, 1) = v(x),

and Q(x, t) = x0 for all (x, t) ∈ ∂In × I, the homotopy Q shows that u ' v rel ∂In,
which is what we wanted to prove.
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Corollary 43.14. Suppose w and z are two paths in X from x0 to x1 and V : u ' v
is a level homotopy along z. If w ' z rel ∂I then tw(u) ' v rel ∂In.

Proof. Let U : In × I → X be the homotopy that defines tw(u) (i.e. U = U ′ ◦ r as
specified in (2) above.) Concatenate U and V in the normal way:

(x, t) 7→

{
U(x, 1− 2t), 0 ≤ t ≤ 1

2 ,

V (x, 2t− 1), 1
2 ≤ t ≤ 1.

This defines a homotopy tw(u) ' v which moreover is a level homotopy along w̄ ∗ z.
Since by assumption w̄ ∗ z is nullhomotopic, Lemma 43.13 tells us that tw(u) ' v rel
∂In.

We now prove Theorem 43.9.

Proof of Theorem 43.9. Define T on objects by T (x) := πn(X,x). Define T on mor-
phisms by setting

T [w] := [tw(u)],

There are several things we need to check in order to complete the proof, and we will
carry out the argument in three steps.

1. We first show that if [w] is a path class in X from x0 to x1 and [u] ∈ πn(X,x0)
then [tw(u)] is a well-defined element of πn(X,x1). Corollary 43.14 tells us that
[tw(u)] depends only on the path class [w] of w. To see that [tw(u)] only depends
on the homotopy class [u] of u, we argue as follows. Suppose U : u ' v rel ∂In,
that is, U is a level homotopy along the constant path e0 based at x0. Let V be the
homotopy defining tw(v) (thus V is a level homotopy v ' tw(v)). Concatenating U
and V together gives a level homotopy u ' tw(v) along e0 ∗ w. Since e0 ∗ w ' w rel
∂I, Corollary 43.14 tells us that tw(u) ' tw(v) rel ∂In.

2. We now prove that T does indeed take values in Groups. For this it suffices
to show that if w is a path from x0 to x1 and u, v ∈ P (X,x0), then (as elements of
P (X,x1), one has:

tw(u ∗ v) ' tw(u) ∗ tw(v) rel ∂In.

For this let U : u ' tw(u) and V : v ' tw(v) denote the level homotopies that define
tw(u) and tw(v) respectively. Then define Q : In × I → X by

Q(s1, . . . , sn, s) :=

{
U(s1, . . . , sn−1, 2sn, s), 0 ≤ sn ≤ 1

2 ,

V (s1, . . . , sn−1, 2sn − 1, s), 1
2 ≤ sn ≤ 1.

If sn = 1
2 then

(s1, . . . , sn−1, 2sn) = (s1, . . . , sn−1, 1) ∈ ∂In

and
(s1, . . . , sn−1, 2sn − 1) = (s1, . . . , sn−1, 0) ∈ ∂In,

and hence both U and V give the same value for all s ∈ I, namely w(s). Thus Q is
continuous, and so Q is a level homotopy u∗ v ' tw(u)∗ tw(v) along w. By Corollary
43.14 (applied with z := w) we obtain tw(u ∗ v) ' tw(u) ∗ tw(v) rel ∂In as required.
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3. Finally let us check that T really is a functor. If e0 is the constant path at x0

then it is clear that T (e0) acts as the identity on πn(X,x0), so we need only check
that if w and z are paths in X with w(1) = z(0) then2

T ([w ∗ z]) = T [z] ◦ T [w] (43.3)

To see this, take u ∈ P (X,w(0)). Then there are level homotopies u ' tw(u) along
w and tw(u) ' tz(tw(u)) along z, and concatenating gives us a level homotopy u '
tz(tw(u)) along u. Applying Corollary 43.14 again, we obtain tw∗z(u) ' tz(tw(u)) rel
∂In, which is what we wanted to prove.

Theorem 43.9 has several formal consequences. The first is the following version
of Proposition 4.13.

Proposition 43.15. Suppose f0, f1 : X → Y are continuous maps and F : f0 ' f1 is
a free homotopy from f0 to f1. Choose x0 ∈ X and let w denote the path in Y given
by w(t) = F (x0, t). Then there is a commutative diagram:

πn(X,x0) πn(Y, f0(x0))

πn(Y, f1(x0)),

πn(f0)

πn(f1)
T [w]

Proof. If u ∈ P (X,x0) then define U : In × I → Y by U(x, t) := F (u(x), t). Then U
is a level homotopy along w from f0 ◦ u to f1 ◦ u. By Corollary 43.14 again, we have
tw(f0 ◦ u) ' f1 ◦ u rel ∂In, which gives commutativity of the diagram.

By arguing as in the proof of Proposition 4.15 we then obtain:

Proposition 43.16. Suppose f : X → Y is a homotopy equivalence. Then for any
x0 ∈ X the induced map πn(f) : πn(X,x0)→ πn(Y, f(x0)) is an isomorphism.

And then as in Corollary 4.16 we have:

Corollary 43.17. Suppose X has the same homotopy type as a path connected
space Y . Then for all x0 ∈ X and y0 ∈ Y one has πn(X,x0) ∼= πn(Y, y0). If X is a
contractible space then πn(X,x0) = {0} for all x0 ∈ X.

We conclude this lecture by discussing the homotopy groups of spheres.

Theorem 43.18 (Homotopy groups of spheres).

1. One has πn(S1) = 0 for all n ≥ 2.

2. If 0 < k < n then πk(S
n) = 0.

3. For all n ≥ 1 one has πn(Sn) 6= 0.

2This equation looks contravariant at first sight, but this is just due to our convention that w ∗ z is
the path that first follows w and then follows z.
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Proof (Sketch). The first statement follows from the long exact sequence of ho-
motopy groups for fibrations that we will prove in Lecture 45 (specifically, Corol-
lary 45.18.) Indeed, there is a fibration Z → R → S1. Since both R and ev-
ery path connected component of Z is contractible, Corollary 43.17 tells us that
πn(R) = πn(Z) = 0 for all n ≥ 1. Thus the long exact sequence tells us that
πn(S1) = 0 for all n ≥ 2.

The second statement follows from the fact that if 0 < k < n then any continuous
map f : Sk → Sn is nullhomotopic relative to the basepoints. This follows from the
Cellular Approximation Theorem that we will discuss in Lecture 46, see Corollary
46.14.

The fact that πn(Sn) 6= 0 follows immediately from the fact that Hn(Sn) 6= 0.
Indeed, since Hn is a functor, the latter tells us that the identity map on Sn is
not freely nullhomotopic to a constant. Thus the identity map is also not relatively
homotopic to a constant, and thus [idSn ] 6= 0 ∈ [Sn, Sn]∗.

Remark 43.19. In fact, as we will see in Lecture 46, one actually always has

πn(Sn) ∼= Z, ∀n ≥ 1.

It is however an open problem to compute the homotopy groups of spheres in
general—S1 is the only sphere for which all the homotopy groups are known. In
Lecture 45 we will prove give a few more “ad hoc” computations: for instance,
π3(S2) ∼= Z. But the groups can be more complicated! Indeed, one has (!!)

π14(S4) ∼= Z2 × Z12 × Z120, and π15(S4) ∼= Z2 × Z2 × Z2 × Z2 × Z2 × Z84.
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LECTURE 44

The Puppe Sequence

In this lecture we prove the analogue of the long exact sequence axiom for homotopy
groups. This requires us to define the relative homotopy groups πn(X,X ′) forX ′ ⊂ X
(the standard homotopy groups correspond to X ′ being a single point x0). The long
exact sequence axiom will take the following form: if X ′ ⊂ X and x0 ∈ X ′ then the
pointed inclusion (X ′, x0) ↪→ (X,x0) gives rise to an long exact sequence

· · · → πn(X ′)→ πn(X)→ πn(X,X ′)→ πn−1(X ′)→ · · ·

where we abbreviate (as usual) πn(X) = πn(X,x0) and πn(X ′) = πn(X ′, x0).
A first obstacle to this making sense is that for small n, πn(X) and πn(X,X ′) are

not groups (just pointed sets) and thus we need to redefine what exactness actually
means in this setting.

Definition 44.1. A sequence of pointed sets and pointed functions

(X,x)
f−→ (Y, y)

g−→ (Z, z)

is said to be exact in Sets∗ if

im f = ker g := g−1(z).

If the pointed sets are groups, and the basepoints are chosen to be the identity
elements, then this recovers the standard notion of exactness. Note that here the
choice of basepoint is crucial, since “ker g” depends on the basepoint.

We now use Definition 44.1 to define what it means for a sequence to be exact in
hTop∗.

Definition 44.2. Let

· · · → Xn+1 → Xn → Xn−1 → · · ·

be a sequence of pointed spaces and pointed maps. We say this sequence is exact in
hTop∗ if for every pointed space Y the induced sequence of pointed homotopy classes:

· · · [Y,Xn+1]∗ → [Y,Xn]∗ → [Y,Xn−1]∗ → · · ·

is exact in Sets∗. Here the basepoint of [Y,Xn]∗ is the pointed homotopy class of the
constant map that sends all of Y to the basepoint of Xn.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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Definition 44.3. Let f : (X,x0)→ (Y, y0) be a pointed map. The mapping fibre
of f is the pointed space

Mf :=
{

(x,w) ∈ X × Y I | w(0) = y0, w(1) = f(x)
}
,

where the basepoint is ε0 := (x0, ey0), where ey0 is the constant path at y0.

From a categorical point of view, Mf is the pullback in Top∗ of the diagram

Mf Y I

X Y

ev1

f

where ev1(w) := w(1). We now define a collection of related maps.

1. There is an injection

`1 : ΩY →Mf, `1(w) = (x0, w).

2. There is also a projection

f1 : Mf → X, f1(x,w) := x.

Calling this projection “f1” may appear strange at first, but it will shortly seem
to be convenient.

3. We can iterate the construction of Mf and define

Mf1 :=
{

(x,w, z) ∈Mf ×XI | z(0) = x0, z(1) = f1(x,w) = x
}

This is again a pointed space, where the basepoint is (x0, ey0 , ex0). There is
another injection

`2 : ΩY →Mf1, `2(w) = (x0, w, ex0).

4. There is another projection

f2 : Mf1 →Mf, f2(x,w, z) = (x,w).

5. We can then iterate a third time to form

Mf2 :=
{

(x,w, z, ζ) ∈Mf1 × (Mf)I | ζ(0) = ε0, ζ(1) = f2(x,w, z) = (x,w)
}
,

which is a pointed space with basepoint (x0, ey0 , ex0 , ε0). There is an third
injection

`3 : ΩX →Mf2, `3(z) = (x0, ey0 , z, ε0),

where ε0 is the basepoint of Mf . (Warning: the domain of `3 is different to
the domain of `1 and `2!)
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6. There is another projection

f3 : Mf2 →Mf1, f3(x,w, z, ζ) = (x,w, z).

7. We now iterate a fourth time. . . Only joking, we could keep going indefinitely,
but three iterations will suffice for the time being.

These maps fit together nicely to build the following commutative diagram in hTop∗.

Proposition 44.4. Let f : X → Y be a pointed map. Then the following diagram
is commutative in hTop∗:

ΩX ΩY Mf X Y

Mf2 Mf1 Mf X Y

Ω(f)

`3◦θ

`1

`2

f1

idMf

f

idX idY

f3 f2 f1 f

where the map θ : ΩX → ΩX appearing on the left-most vertical arrow is the inver-
sion θ(z) = z̄.

Proof. I leave it up to you to check that the two squares on the right commute. The
second square actually commutes in Top∗ (and thus also in hTop∗):

f2 ◦ `2(w) = f2(x0, w, ex0) = (x0, w) = `1(w).

The left-most square only commutes up to homotopy. Indeed, if z ∈ ΩX then going
clockwise,

`2 ◦ Ω(f)(z) = `2(f ◦ z) = (x0, f ◦ z, ex0).

Going anti-clockwise,

f3 ◦ `3 ◦ θ(z) = f3 ◦ `3(z̄) = f3(x0, ey0 , z̄, ε0) = (x0, ey0 , z̄).

To define a homotopy between the two, let us introduce the following notation: if
u : I → Z is a path and t ∈ I, let ut : I → Z denote the path ut(s) = u(st), and
define ūt to be the path1 ūt(s) := ū(st) = u(1− st).

Now define F : Ω(X,x0)× I →Mf1 by

F (z, t) := (z(1− t), f ◦ z1−t, z̄t).

Then F is continuous and F (z, 0) = (x0, f ◦ z, ex0) and F (z, 1) = (x0, ey0 , z), so that
`2 ◦ Ω(f) ' f3 ◦ `3 ◦ θ. Finally, F (ex0 , t) = (x0, ey0 , ex0) for all t ∈ I, and hence F is
a homotopy relative to the basepoint ex0 ∈ Ω(X,x0). This completes the proof.

Proposition 44.5. The two injections `2 and `3 induce isomorphisms [`2] and [`3]
in hTop∗.

1Warning: in general ūt 6= ut, as the latter is the path s 7→ u(t(1− s)).
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Proof. We define a continuous map F : Mf1 × I →Mf1 such that

F (x,w, z, 0) = (x,w, z), F (x,w, z, 1) ∈ `2(Ω(Y, y0)), F (x0, ey0 , ex0 , t) = (x0, ey0 , ex0).

In fact, we will construct F as a concatenation F1 ∗F2 of two other homotopies. For
this, first let F1 denote a homotopy that begins with (x,w, z) and ends at (x,w ∗
ef(x), z). Next, let F2 denote the homotopy given by

F2(x,w, z, t) = (z(1− t), w ∗ (f ◦ z̄t), z1−t) ,

where we are using the same notation as in the proof of Proposition 44.4, i.e.
z1−t(s) := z(s(1 − t)). Then F2(x,w, z, 0) = (x0, w ∗ ef(x), z), so that the compo-
sition F1 ∗ F2 is well-defined. Moreover

F2(x,w, z, 1) = (x0, w ∗ (f ◦ z̄), ey0) ∈ `2(Ω(Y, y0)).

Finally, (x, ey0 , ex0) really is fixed throughout the entire homotopy, since ey0 ∗ ey0 =
ey0 .

The homotopy F exhibits `2(Ω(Y, y0)) as a pointed deformation retract of Mf1.
Thus [`2] is an isomorphism in hTop∗. The proof that [`3] is an isomorphism is similar,
and I will leave this as an exercise.

The next result gives us a way of proving exactness in hTop∗.

Lemma 44.6. Let f : (X,x0) → (Y, y0) be a pointed map, and let ev1 : Mf → Y
denote the map ev1(x,w) = w(1). Then f is nullhomotopic rel x0 if and only if there
exists a pointed map k : X →Mf such that f = ev1 ◦ k:

Mf

X Y

ev1k

f

Proof. Assume there exists a continuous map F : X× I → Y such that F (x, 0) = y0,
F (x, 1) = f(x) and F (x0, t) = y0 for all t. Let Fx : I → Y be the map Fx(t) = F (x, t).
Then define k : X →Mf by

k(x) = (x, Fx).

This k has the desired properties.
Conversely, if such a pointed map k exists, then writing k(x) = (k1(x), wx), one

necessarily has wx0 = ey0 , and commutativity forces wx(1) = f(x) for each x. Our
desired pointed homotopy is then given by

F : X × I → Y, F (x, t) = wx(t).

Lemma 44.7. Let f : (X,x0)→ (Y, y0) be a pointed map. Then the sequence

Mf
f1−→ X

f−→ Y

is exact in hTop∗.
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Proof. Let Z be any pointed space, and consider the induced maps in Sets∗:

[Z,Mf ]∗
α−→ [Z,X]∗

β−→ [Z, Y ]∗

Here α sends a class [g] ∈ [Z,Mf ]∗ to the class [f1 ◦ g] ∈ [Z,X]∗, and β is defined
similarly. We take the basepoint in [Z, Y ]∗ to be the class of the constant map
Z → y0. Thus the kernel of β consists of all (homotopy classes) of maps h : Z → X
such that f ◦ h is pointedly nullhomotopic. To prove exactness, we need to show:

• imα ⊆ kerβ: Define a map k : Mf →M(f ◦ f1) by setting k(x,w) = (x,w,w).
(Here M(f ◦ f1) ⊂ Mf × Y I as f ◦ f1 : Mf → Y ). With ev1 defined as in
Lemma 44.6 (but as a map M(f ◦ f1) → Y instead), it is clear this diagram
commutes:

M(f ◦ f1)

Mf Y

ev1k

f◦f1

Thus f ◦f1 is pointedly nullhomotopic. It follows that f ◦f1 ◦g is also pointedly
nullhomotopic for every [g] ∈ [Z,Mf ]∗.

• kerβ ⊆ imα: Suppose [h] ∈ [Z,X]∗ and suppose [h] ∈ kerβ. Thus there exists
F : f ◦ h ' c rel x0, where c is the constant map at y0. Define Fz : I → Y by
Fz(t) = F (z, t), and then define, as in the proof of Lemma 44.6, k : Z →M(f◦h)
by k(z) = (z, Fz), so that the following commutes:

M(f ◦ h)

Z Y

ev1k

f◦h

Now by definition, M(f ◦h) ⊂ Z×Y I , and the map h× idY I : Z×Y I → Z×Y I

restricts to define a map h̃ : M(f ◦ h)→Mf . Thus h̃ ◦ k : Z →Mf , and since
f1 ◦ h̃ ◦ k = h, we have that [h] = α[h̃ ◦ k].

Corollary 44.8. If f : X → Y is a pointed map then the sequence

· · · →Mf2
f3−→Mf1

f2−→Mf
f1−→ X

f−→ Y

is exact in hTop∗.

Proof. Iterate Lemma 44.7.

Corollary 44.9. If f : X → Y is a pointed map then the sequence

ΩX
Ω(f)−−−→ ΩY

`1−→Mf
f1−→ X

f−→ Y

is exact in hTop∗.
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Proof. We apply [Z,�]∗ to the commutative diagram from Proposition 44.4 to form
a new commutative square:

[Z,ΩX]∗ [Z,ΩY ]∗ [Z,Mf ]∗ [Z,X]∗ [Z, Y ]∗

[Z,Mf2]∗ [Z,Mf1]∗ [Z,Mf ]∗ [Z,X]∗ [Z, Y ]∗

The bottom row is exact in Sets∗ by Corollary 44.8. Since the vertical maps are
isomorphisms by Proposition 44.5, it follows that the top row is also exact in Sets∗.

The next result tells us that Ω is an exact functor on hTop∗.

Proposition 44.10. If X → Y → Z is an exact sequence in hTop∗ then so is the
“looped” sequence ΩX → ΩY → ΩZ.

Proof. We use the fact that (Σ,Ω) form an adjoint pair. For every pointed space W ,
there is a commutative diagram in which the vertical maps are pointed bijections:

[ΣW,X]∗ [ΣW,Y ]∗ [ΣW,Z]∗

[W,ΩX]∗ [W,ΩY ]∗ [W,ΩZ]∗

The top row is exact in Sets∗ by hypothesis. Thus the bottom row is exact in Sets∗
too. Since W was arbitrary, it follows that ΩX → ΩY → ΩZ is exact in hTop∗.

Putting what we have done so far together gives the following theorem, which is
the main result of today’s lecture.

Theorem 44.11 (The Puppe Sequence). If f : X → Y is a pointed map then there
is a long exact sequence in hTop∗ of the form

· · · → Ωn(Mf)
Ωn(f1)−−−−→ ΩnX

Ωn(f)−−−−→ ΩnY
Ωn−1(`1)−−−−−−→ Ωn−1(Mf)→ · · ·

which ends with Mf
f1−→ X

f−→ Y .

Proof. By Corollary 44.9 the sequence

ΩX → ΩY →Mf → X → Y

is exact in hTop∗, and by Proposition 44.10 the looped sequence

Ω2X → Ω2Y → Ω(Mf)→ ΩX → ΩY

is also exact in hTop∗. Since these sequences overlap, we may splice them together.
An inductive argument completes the proof.
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Remark 44.12. It will not surprise you to learn that there is a dual formulation of
this result. We won’t need it, so I won’t go over the proofs, but let me summarise
the ideas. Firstly, a sequence of pointed spaces and pointed maps

· · · → Xn+1 → Xn → Xn−1 → · · ·

is said to be coexact in hTop∗ if for any pointed space Z, the reversed sequence

· · · ← [Xn+1, Z]∗ ← [Xn, Z]∗ ← [Xn−1, Z]∗ ← · · ·

is exact in Sets∗. Given f : X → Y , define the2 mapping cone Cf , which is defined
as the adjunction space (X ∧ I)∪f Y , where X ∧ I is the smash product (cf. Problem
Q.7). There is a natural map Cf → ΣX (this plays the role that `1 : ΩY →Mf did
above), and one obtains the following coexact Puppe Sequence:

X
f−→ Y → Cf → ΣX → ΣY → Σ(Cf)→ Σ2X → Σ2Y → Σ2(Cf)→ · · ·

The long exact sequence for homotopy groups and the homotopy long exact se-
quence for fibrations are basically special cases of the Puppe Sequence. In this lecture
we will discuss the former, and leave the homotopy sequence for fibrations till the
next lecture.

Corollary 44.13. Let (X,x0) be a pointed space, and let X ′ ⊂ X be a subspace
containing x0. Let ı : (X ′, x0) ↪→ (X,x0) be the pointed inclusion. Then there is an
exact sequence in Sets∗:

· · ·πn+1(X ′)→ πn+1(X)→ [S0,Ωn(Mı)]∗ → πn(X ′)→ · · ·

which ends with [S0,Mı]∗ → π0(X ′)→ π0(X).

Proof. Here we have just applied the functor [S0,�] to the Puppe Sequence for
the inclusion ı : X ′ ↪→ X, and used the definition of πn, recalling that πn+1(X ′) =
π1(ΩnX ′).

To transform this sequence into our desired long exact sequence, we want write
the terms [S0,Ωn(Mı)]∗ in a more convenient form, and at the same time get a
nice description of the “connecting homomorphism” [S0,Ωn(Mı)]∗ → πn(X ′). This
requires us to define the relative homotopy groups.

Definition 44.14. Let X ′ ⊂ X and let x0 ∈ X ′. Then (X,x0) and (X ′, x0) are
pointed spaces. We refer to (X,X ′, x0) (or sometimes just (X,X ′)) as a pointed
pair. A pointed pair map f : (X,X ′) → (Y, Y ′) is a pointed map that also has
f(X ′) ⊂ Y ′. There is also a notion of a pointed pair homotopy, which is defined
as you would guess. We write [(X,X ′), (Y, Y ′)]∗ for the space of homotopy classes of
pointed pair maps.

Now think of Sn−1 ⊂ Bn, and choose ∗ := (1, 0, . . . , 0) ∈ Sn−1.

2Warning: this is not quite the same thing as the “mapping cone” from Definition 27.2, which was
concerned with chain maps between chain complexes. The two concepts are related though.
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Definition 44.15. Given a pointed pair (X,X ′, x0) and an integer n ≥ 0, we define
the nth relative homotopy group

πn(X,X ′, x0) := [(Bn, Sn−1, ∗), (X,X ′, x0)]∗ = [(Bn, Sn−1), (X,X ′)]∗.

We usually abbreviate πn(X,X ′, x0) just as πn(X,X ′).

The name “group” is a bit of a misnomer, since (at least at the moment) there
is no obvious group structure on πn(X,X ′) (it is just a pointed set). This will be
rectified in Corollary 44.18 below. There is a well-defined map (of pointed sets)

δ : πn+1(X,X ′)→ πn(X ′), [u] 7→ [u|Sn ]. (44.1)

Remark 44.16. One can also describe πn(X,X ′) as [(In, ∂In), (X,X ′)]∗, and we will
switch back and forth between the two definitions next lecture. It is clear that if X ′

is itself a point x0 then πn(X,x0, x0) = πn(X,x0) = πn(X) is just the usual higher
homotopy group, since:

[(Bn, Sn−1), (X,x0)] = [(Bn/Sn−1, ∗), (X,x0)] = [(Sn, ∗), (X,x0)] = πn(X,x0).

Here is the promised identification.

Theorem 44.17. Let (X,X ′) be a pointed pair with inclusion ı : X ′ ↪→ X. There is
a bijection Θ: [S0,Ωn(Mı)]∗ → πn+1(X,X ′). Moreover the following diagram com-
mutes, where the top two maps are from Corollary 44.13, the map  is the inclusion
(X,x0) ↪→ (X,X ′) (and we identify πn+1(X,x0) with πn+1(X,x0, x0) as above) and
δ was defined in (44.1).

[S0,Ωn(Mı)]∗

πn+1(X) πn(X ′)

πn+1(X,X ′)

Θ

πn+1() δ

Proof. We will prove the theorem in three steps.
1. In this step we define Θ. Using adjointness of (Σ,Ω), we can rewrite

[S0,Ωn(Mı)]∗ ∼= [Sn,Mı]∗ = πn(Mı).

Thus given a pointed map a : Sn → Mı, we want to build a pointed map of pairs
A : (Bn+1, Sn)→ (X,X ′). Such a map a is of the form

a(y) = (xy, wy) ∈ X ′ ×XI , wy(0) = x0, wy(1) = xy, y ∈ Sn.

An arbitrary non-zero element of Bn+1 can be written uniquely as t · y for some
y ∈ Sn. We then define A : Bn+1 → X by A(0) = x0 and A(t · y) = wy(t). This
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is continuous as wy(0) = x0 for all y ∈ Sn. Moreover A(1 · y) = wy(1) = xy ∈ X ′,
and thus A is a map of pairs (Bn+1, Sn) → (X,X ′). Thus our desired map Θ is
[a] 7→ [A].

2. In this step we show that Θ is well-defined. Suppose a ' b, and F : Sn×Mı→
X is a pointed homotopy from a to b. Thus

F (y, 0) = a(y), F (y, 1) = b(y), ∀ y ∈ Sn,

and if ∗ is our basepoint in Sn then F (∗, s) = (x0, ex0) for all s ∈ I. Now using
exactly the same trick we can build from F a homotopy from the two maps A and
B. Indeed, writing F (y, s) = (xy,s, wy,s), our desired homotopy H : Bn+1× I → X is
defined by H(t · y, s) = wy,s(t). This gives a pointed homotopy of pairs H : A ' B.

3. In this step we prove that Θ is a bijection. Suppose we are given a continuous
pointed map of pairs A : (Bn+1, Sn)→ (X,X ′). Assume for simplicity that A(0) = x0

(note: 0 ∈ Bn+1 is not the basepoint, since that is ∗ ∈ Sn.) Given y ∈ Sn, let wy : I →
X by the path wy(t) = A(t · y). Then define a : Sn →Mı by a(y) = (A(y), wy). This
construction A 7→ a is then an inverse to Θ.

Of course, this only worked because A(0) = x0. But it is easy to see that—up to
changing A through pointed pair homotopies—this can always be achieved.

Finally, the claim that the diagram commutes is left as an exercise in unravelling
the definitions.

Corollary 44.18. Let (X,X ′) be a pointed pair. Then πn(X,X ′) is a group for
n ≥ 2 and an abelian group for n ≥ 3.

Proof. As discussed in the proof of Theorem 44.17, one has [S0,Ωn(Mı)]∗ = [Sn,Mı]∗ =
πn(Mı). Thus using the bijection Θ we can define a group structure on πn+1(X,X ′)
for all n ≥ 1. Since πn(Mı) is abelian by Corollary 43.5 for n ≥ 2, we see that
πn(X,X ′) is abelian for n ≥ 3.

We conclude this lecture by ticking off another axiom:

Theorem 44.19 (The long exact sequence axiom). If (X,X ′) is a pointed pair, then
there is an exact sequence

· · ·πn+1(X ′)→ πn+1(X)→ πn+1(X,X ′)
δ−→ πn(X ′)→ · · ·

where all the maps are induced by inclusions apart from the connecting homomor-
phism δ, which was defined in (44.1).

Proof. Combine Corollary 44.13 and Theorem 44.17.

9



LECTURE 45

Fibrations and weak fibrations

In this lecture we return to the study of fibrations. Let p : E → X be a continuous
map between two topological spaces, and let W be a topological space. Recall from
Definition 33.13 that we say that p has the homotopy lifting property with respect
to W if for any homotopy ft : W → X (for t ∈ [0, 1]) and any continuous map
g0 : W → E such that p ◦ g0 = f0, there exists a homotopy gt : W → X such that
p ◦ gt = ft:

E

W X

p
g0

f0

⇒

E

W X

p
gt

ft

The homotopy gt is called a covering homotopy of ft.

Definition 45.1. We say that p : E → X is a fibration if p has the homotopy lifting
property with respect to every space W . Given x ∈ X, we denote by F := p−1(x) a
fibre of p.

It is not in general true that any two fibres are homeomorphic (contrast this
to fibre bundles). However as we will shortly see, any two fibres have the same
homotopy type when the base space X is path connected (and thus the notation “F”
is unambiguous as far as homotopy type is concerned.)

Example 45.2. Let X and F be any topological spaces, set E := X × F and let
p : E → X denote projection onto the first factor. Then p is a fibration. Indeed,
if ft : W → X is any homotopy and g0 : W → E satisfies p ◦ g0 = f0 then writing
g0(w) = (f0(w), g′0(w)) ∈ X × F , the homotopy gt defined by

gt(w) := (ft(w), g′0(w))

is a continuous map with p ◦ gt = ft.

Example 45.2 tells us that any trivial fibre bundle is a fibration. We shall come
back to this in the proof of Corollary 45.14. It is often convenient to regard a fibration
p : E → X as a pointed map; to do so we simply pick any x0 ∈ X and let y0 denote
any point in the fibre p−1(x0).

Proposition 45.3. Let p : (E, y0) → (X,x0) be a fibration with fibre F = p−1(x0).
Then F and the mapping fibre Mp have the same homotopy type.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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Proof. We have the following commutative diagram, where p1 : Mp→ E is the map
p1(y, w) = y, q : Mp → XI is the map q(y, w) = w, and ev1 : XI → X is the map
ev1(w) = w(1):

Mp E

XI X

p1

q p

ev1

Let e0 denote the constant path at x0. Then (y, e0) ∈ Mp if y ∈ F and hence
we define h : F → Mp by h(y) = (y, e0). To complete the proof we will define a
homotopy inverse to h. Consider the continuous map

ft : Mp→ X, ft(y, w) := w(1− t)

(this is continuous as it is the composition of continuous maps). Since p is a fibration,
we can find a homotopy gt : Mp → E such that p ◦ gt = ft and g0 = p1. Since
p ◦ g1(y, w) = w(0) = x0, the function g1 takes values in the fibre F . Thus there is
a well-defined map k : Mp → F given by k(y, w) = g1(y, w). We claim that k is a
homotopy inverse to h.

Indeed, since g1 takes values in F , the function (y, t) 7→ gt(h(y)) is a homotopy
from idF to k ◦ h. For the converse, we first define jt : Mp → XI by requiring that
jt(y, w) is the path s 7→ w(s(1 − t)). Then j0 = q and j1(y, w) = e0 since every
element (y, w) ∈Mp has w(0) = x0. Now consider the function

lt : Mp→Mp, lt(y, w) := (gt(y, w), jt(y, w)).

To check that lt is well-defined, we need p ◦ gt(y, w) = jt(y, w)(1). This is true, since
both sides are equal to w(1 − t). One has l0(y, w) = (g0(y, w), j0(y, w)) = (y, w) so
that l0 = idMp. Finally l1(y, w) = h ◦ k(y, w). Thus lt is a homotopy from idMp to
k ◦ h. This completes the proof.

We can now use this to give a simple proof that all fibres of a fibration have the
same homotopy type when the base is path connected.

Corollary 45.4. Let p : E → X be a fibration over a path connected space X, and
let x0, x1 ∈ X. Then the two fibres p−1(x0) and p−1(x1) have the same homotopy
type.

Proof. Let Mip denote the mapping fibre of p with respect to the basepoint xi. It
suffices to show that M0p has the same homotopy type as M1p. But this is easy: if
u : I → X is a path from x1 to x0 (which exists as X is path connected) then the
map M0p→M1p given by (y, w) 7→ (y, u ∗w) is a homotopy equivalence (the inverse
is given by (y, w) 7→ (y, ū ∗ w).)

We can also use the Puppe Sequence (Theorem 44.11) to give a quick proof of
the following long exact sequence.
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Theorem 45.5 (The Homotopy Sequence of a Fibration). Let p : E → X be a
fibration with fibre F . Then there is a long exact sequence

· · ·πn(E)
πn(p)−−−→ πn(X)→ πn−1(F )→ πn−1(E)→ · · ·

Proof. Proposition 45.3 tells us that Mp and F have the same homotopy type. Thus
Proposition 43.16 tells us that [Sn,Mp]∗ ∼= [Sn, F ]∗ for all n ≥ 0. The result thus fol-
lows from applying [S0,�]∗ to the Puppe Sequence (Theorem 44.11) to p, as in Corol-
lary 44.13, and using adjointness of (Σ,Ω) to obtain [S0,Ωn(Mp)]∗ ∼= [Sn,Mp]∗ ∼=
[Sn, F ]∗ = πn(F ).

Let us now introduce a generalisation of the fundamental groupoid that involves
two spaces. We will use this to state (and sketch the proof of) a powerful result
which we call the Homotopy Theorem for Fibrations.

Definition 45.6. Let X and Y be topological spaces. We define a category Π(X,Y )
as follows: the objects of Π(X,Y ) are the continuous maps f : X → Y . A morphism
from f to g is an equivalence class of homotopies F : f ' g, where F and G define
the same morphism if F is homotopic to G relative to X × ∂I, that is, if there exists
Φ: X × I × I → Y such that Φ(x, 0, t) = f(x) is independent of t, Φ(x, 1, t) = g(x) is
independent of t, and Φt(x, s) := Φ(x, s, t) is a homotopy from Φ0 = F and Φ1 = G.
Informally: a morphism in Π(X,Y ) is a homotopy of homotopies.

The fundamental groupoid Π(X) is the special case Π(∗, X). I will leave it up
to you as a wholesome exercise to verify that Π(X,Y ) is a groupoid category (cf.
Definition 3.19), i.e. that every morphism in Π(X,Y ) is an isomorphism.

Remark 45.7. The dependence of the groupoid category on X and Y leads to the
notion of a 2-category. However, higher category theory goes beyond the scope of
this course, so I won’t go into the details.

Let us go back to fibrations. Suppose p : E → X is a fibration, and f : Z → X is
a continuous map. The pullback (cf. Example 40.6, compare also Definition 34.1)
in Top is the topological space

Q = {(z, y) ∈ Z × E | f(z) = p(y)} ,

equipped with the projection q : Q→ Z given by q(z, y) = z. We denote by ϕ : Q→ E
the map ϕ(z, y) = y, so that the following commutes:

Q E

Z X

ϕ

q p

f

(45.1)

Lemma 45.8. The map q is a fibration.
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Proof. Let ht : W → Z be a homotopy and g0 : W → Q be a continuous map such
that q ◦ g0 = h0. We want to find a homotopy gt : W → Q such that q ◦ gt = ht.
Consider f ◦ ht : W → X and ϕ ◦ g0 : W → E. Then p ◦ ϕ ◦ g0 = f ◦ q ◦ g0 = f ◦ h0.
Since p is a fibration, there exists kt : W → E such that p◦kt = f ◦ht and k0 = ϕ◦g0.
We then extend g0 to a homotopy gt : W → Q via

gt(w) = (ht(w), kt(w)).

This is a well-defined element of Q by construction and satisfies q ◦ gt = ht.

Now suppose F : f0 ' f1 is homotopy from f0 to f1. Let ft = F (·, t) as usual. Let
q0 : Q0 → Z and q1 : Q1 → Z denote the two pullback fibrations with corresponding
maps ϕ0 : Q0 → E and ϕ1 : Q1 → E.

Q0 E

Z X

ϕ0

q0 p

f0

Q1 E

Z X

ϕ1

q1 p

f1

Since p is a fibration, there exists a homotopy ψt : Q0 → E such that ψ0 = ϕ0 and
p ◦ ψt = ft ◦ q0. Since the right square is a pullback in Top, there exists a map
θ : Q0 → Q1 such that ϕ1 ◦ θ = ψ1 and q1 ◦ θ = q0.

Suppose now that F ′ : f0 ' f1 is another homotopy from f0 to f1 such that F and
F ′ define the same morphism in Π(Z,X). This means that there exists a homotopy
Φ: Z×I×I → X relative to Z×∂I from F to F ′. By applying the construction above
to F ′, we obtain another map θ′ : Q0 → Q1. By lifting the homotopy Φ◦(q0×idI×idI)
one can show that there exists a homotopy θt : Q0 → Q1 such that q1 ◦ θt = q0 for all
t.

Denote by hFibZ the category of all fibrations over Z. An object of this category
is a fibration q : Q → Z, and a morphism θ from two objects q0 : Q0 → Z and
q1 : Q1 → Z is a homotopy class [θt] of maps Q0 → Q1 such that q1 ◦ θt = q0. The
construction above tells us the following.

Theorem 45.9 (The Homotopy Theorem for Fibrations). Let p : E → X be a fi-
bration. There is a functor Tp : Π(Z,X) → hFibZ that assigns to a continuous map
f : Z → X the fibration q : Q → Z defined above, and to a morphism [ft] : f0 → f1

it assigns the morphism [θt] from above.

Proof. It remains to check that T is a functor. This is left as an exercise.

Since Π(Z,X) is a groupoid category and Tp is a functor, the class Tp[ft] is always
an isomorphism. We obtain the following formal consequence.

Corollary 45.10. Let p : E → X be a fibration and let f : Z → X be a homotopy
equivalence. Then the map ϕ : Q→ E from (45.1) is a homotopy equivalence.

Remark 45.11. Theorem 45.9 is a massive generalisation of Corollary 45.4, which
(roughly speaking) corresponds to the case where we take Z to be the unit interval.
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Let us now return to less abstract material. There is a slightly weaker notion
of a fibration, which is (unimaginatively) called a weak fibration. This is a map
p : E → X that has the homotopy lifting property with respect to any cell complex
W . In fact, having the homotopy lifting property with respect to any cell complex is
equivalent to having the homotopy lifting property with respect to all cubes In for
n ≥ 0 (where I0 = ∗). This is the content of the following result.

Proposition 45.12. Let p : E → X have the homotopy lifting property with respect
to any cube In. Then p is a weak fibration, that is, it has the homotopy lifting
property with respect to any cell complex.

The proof will use the following observation that we will repeatedly make use of
throughout the rest of this lecture. There is a homeomorphism of pairs

r : (In+1, In × {0})→
(
Bn × I,

(
Bn × {0}

)
∪
(
Sn−1 × I

))
Thus if we are given maps

h : Bn × I → X, k :
(
Bn × {0}

)
∪
(
Sn−1 × I

)
→ E,

such that the following diagram commutes:(
Bn × {0}

)
∪
(
Sn−1 × I

)
E

Bn × I X

k

p

h

then the homotopy lifting property for cubes implies we can find a map l : Bn×I → E
that fits along the dotted arrow:(

Bn × {0}
)
∪
(
Sn−1 × I

)
E

Bn × I X

k

p

h

l

Proof of Proposition 45.12. Let W be a cell complex and let Wn denote the nth
skeleton of W . Assume we are given ft : W → X and a lift g0 of f0. Since W carries
the colimit topology with respect to its skeleton filtration, it suffices to show that for
every n ≥ 0 there exists a homotopy gnt : Wn → E that lifts fnt := ft|Xn and satisfies
gn0 = g0|Xn .

We prove this by induction on n. The case n = 0 is clear, since W 0 is a dis-
crete space (a discrete collection of I0s). For the inductive step, assume we have
constructed gn−1

t . Let a : (Bn, Sn−1)→ (C ∪Wn−1,Wn−1) denote the characteristic
map of an n-cell1 C. We build from a a map

k :
(
Bn × {0}

)
∪
(
Sn−1 × I

)
→ E

1I would normally call an n-cell E and the characteristic map g, but alas, both of those letters are
taken. . .
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by setting k = g0 ◦ a on Bn×{0} ∼= Bn and k(x, t) = gn−1
t (a(x)) on Sn−1× I (this is

well-defined because they both agree on the overlap Sn−1 × {0}.) This gives us the
following commutative diagram:(

Bn × {0}
)
∪
(
Sn−1 × I

)
E

Bn × I X

k

p

(x,t)7→ft(a(x))

Thus we obtain a lifting over the cell E via the dotted arrow. Doing this for all the
n-cells gives us the desired extension gnt : Wn → E. The fact that gnt is continuous
is due to the fact that gnt is continuous on each n-cell, together with part (4) of
Proposition 18.17.

A similar argument allows us to prove the following result.

Proposition 45.13. Let p : E → X be a continuous map. Let U be a collection of
subsets of X such {U◦ | U ∈ U} forms an open cover of X. Assume that pU :=
p|U : p−1(U)→ U is a weak fibration for every U ∈ U. Then p is a weak fibration.

Proof. It suffices by the previous result to verify the homotopy lifting property for
a cube In. Equivalently, it suffices to show that given h, k such that the following
diagram commutes, we can always find an l to fit on the dotted line (this is the
same observation as was used just before the proof of Proposition 45.12, only with
(Bn, Sn−1) replaced with (In, ∂In)):(

In × {0}
)
∪
(
∂In × I

)
E

In × I X

k

p

h

l

By the Lebesgue Number Lemma (Lemma 6.7), there exists N ∈ N such that if we
chop up In into Nn smaller cubes I1, I2, . . . , INn of equal size, and I into N intervals
J1, . . . , JN of equal size, then for every i, j, h(Ii × Jj) is contained in U◦ for some
U ∈ U.

Let Km denote the union of the m-dimensional faces of all the cubes Ii, for
m = 0, 1, . . . , n. Set K−1 = ∅ and l−1 := k. By induction on m, we claim we can
find lm to fit along the dotted arrow:(

In × {0}
)
∪
(
Km−1 × J1

)
E

(
In × {0}

)
∪
(
Km × J1

)
X

lm−1

p

h

lm
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Indeed, it suffices to do this one cube at a time. If L is an m-dimensional cube and
∂L the union of its (m− 1)-dimensional faces, then since pU is a weak fibration, for
an appropriate U we can find lL to fit along the dotted arrow:(

L× {0}
)
∪
(
∂L× J1

)
p−1(U)

L× J1 U

lm−1

p

h

lL

Now the maps lL as L ranges over the m-dimensional faces combine together to give
us the desired lm. Then for m = n we obtain an extension of h to a map on In× J1.
Now we repeat to extend over In × J2, and continue. Eventually we are done.

This gives us a proof of the first half of Theorem 33.17:

Corollary 45.14. Let F → E
p−→ X be a fibre bundle. Then p is a weak fibration.

Proof. By Example 45.2, any fibre bundle satisfies the hypotheses of Proposition
45.13.

Remark 45.15. A harder version of Proposition 45.13 states that if X is paracompact
and pU is a fibration for every U then so is p. Combining this result with Example
45.2 shows that every fibre bundle over a paracompact base is a fibration (this is the
second half of Theorem 33.17.)

We would like to combine Theorem 45.5 and Corollary 45.14 to obtain a long
exact sequence for fibre bundles. Unfortunately, since not every fibre bundle is a
fibration (as the base might not be paracompact2), this does not follow directly.
Thus we need another argument. Here is the last result of today’s lecture.

Theorem 45.16 (Serre’s Theorem). Let p : E → X be a weak fibration. Let x0 ∈ X
and set F := p−1(x0). Let y0 ∈ F and let ı : (E, y0) ↪→ (E,F ) denote the inclusion,
and let p′ : (E,F )→ (X,x0) be as in the picture:

(E, y0)

(E,F ) (X,x0)

pı

p′

Then πn(p′) : πn(E,F )→ πn(X,x0) is a bijection for all n ≥ 1.

Remark 45.17. For n ≥ 2, πn(p′) is an isomorphism since πn(p′) is a homomorphism.
However for n = 1 it is just a bijection, since π1(E,F ) does not have a group structure.

2Also we didn’t prove fibre bundles over paracompact spaces are fibrations!
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Proof of Theorem 45.16. First, since p is a weak fibration, by arguing by induction
on n and using that In+1 = In × I, we see that given a commutative square we can
always fill in the dashed map:

I0 E

In X

That is, in order to lift a map In → X to E, it suffices to specify the lift of a single
point.

We first prove that πn(p′) is surjective. Let u : (In, ∂In) → (X,x0) represent an
element [u] ∈ πn(X,x0). Define g : I0 → E by g(∗) = y0. Then by the diagram
above, we can find v : In → E such that p ◦ v = u and v(0) = y0. Since u(∂In) =
{x0}, we have v(∂In) ⊂ F and thus v is a map of pairs (In, ∂In) → (E,F ). Thus
[v] ∈ πn(E,F ) and πn(p′)[v] = [u]. This proves surjectivity.

Now suppose we are given u : (Bn, Sn−1)→ (E,F ) such that the map p ◦ u : Bn
/
Sn−1 →

X induced by p ◦ u : (Bn, Sn−1) → (X,x0) is nullhomotopic. We claim that u itself
is nullhomotopic. There is a homotopy of pointed pairs

U : (Bn×I, Sn−1×I)→ (X,x0), U(z, 0) = p◦u(z), U(z, 1) = x0, ∀ z ∈ Bn.

Define k :
(
Bn × {0}

)
∪
(
Sn−1 × I

)
→ E by setting k(z, t) = u(z). Then k is well-

defined and continuous and the following diagram commutes:(
Bn × {0}

)
∪
(
Sn−1 × I

)
E

Bn × I X

k

p

U

The argument we have used many times now gives us a map V : Bn × I → E such
that both triangles commute:(

Bn × {0}
)
∪
(
Sn−1 × I

)
E

Bn × I X

k

p

U

V

We can view V as a homotopy of pointed pairs from u to a new map v := V (·, 1).
The map v : Bn → F has image in F , and the existence of V shows that [u] = [v] is in
the image of the map πn(F, F )→ πn(E,F ) induced by inclusion. But πn(F, F ) = 0
(this is true for any space, as I invite you to verify), and hence [u] = 0.

If n ≥ 2 then πn(p′) is a homomorphism. We have just shown that kerπn(p′) is
trivial, and hence πn(p′) is injective, and thus bijective. For n = 1 this argument
does not work, so let us argue directly. Suppose [u0], [u1] ∈ π1(E,F ) are such that
[p ◦ u0] = [p ◦ u1] ∈ π1(X,x0). The ui are paths (I, ∂I)→ (E,F ) with ui(0) = y0. If
w := ū0 ∗ u1 then p ◦ w is nullhomotopic, and hence so is w. Since u1 = u0 ∗ w, it
follows [u0] = [u1] as required.
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Corollary 45.18 (Homotopy Sequence of a Weak Fibration). Let p : E → X be a
weak fibration. Choose basepoints y0 ∈ E and x0 = p(y0) ∈ X. Let F := p−1(x0).
Then there is an exact sequence

· · ·πn(E)
πn(p)−−−→ πn(X)→ πn−1(F )→ πn−1(E)→ · · ·

Proof. We consider the long exact sequence of homotopy groups for the pair (E,F )
(Theorem 44.17), and use Serre’s Theorem to replace πn(E,F ) with πn(X). The
map πn(E) → πn(X) is then the composition πn(p′) ◦ πn(ı), where p′ and ı are as
in the statement of Serre’s Theorem. Since this composition is just πn(p), the result
follows.

Note that Corollary 45.18 is what we needed to finish the proof of part (1) of
Theorem 43.18. Further applications to the homotopy groups of spheres are on
Problem Sheet R.
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LECTURE 46

Epilogue

In this final lecture I will discuss (without proof) several important topics that un-
fortunately we ran out of time to cover properly. Everything in this lecture is non-
examinable.

We begin by stating three key theorems in homotopy theory. The first is the
higher dimensional analogue of Theorem 9.7. If u : (Sn, ∗)→ (X,x0), let u′ : ∆n → X
denote the same map, precomposed with a homeomorphism of pairs (∆n, ∂∆n) →
(Sn, ∗). This is the same notational convention we used in Remark 9.1. Arguing as
in Proposition 9.2, there is a well-defined map

h : πn(X,x0)→ H̃n(X), [u] 7→ 〈u′〉.

Moreover as in Proposition 21.7, this is actually a natural transformation h : πn →
H̃n. The Hurewicz Theorem we proved in Lecture 9 required us to abelianise π1(X,x0)
in order to get an isomorphism. For the higher homotopy groups, they are already
abelian, so this is unnecessary. On the other hand, the theorem is only true for πn if
all the lower homotopy groups vanish.

Theorem 46.1 (The Hurewicz Theorem). Let X be a topological space and let
n ≥ 2. Assume that πi(X) = 0 for all i < n. Then also H̃i(X) = 0 for i < n and the
Hurewicz map is an isomorphism πn(X)→ H̃n(X).

An immediate corollary of Theorem 46.1 and part (2) of Theorem 43.18 is:

Corollary 46.2. For any n ≥ 1, πn(Sn) ∼= Z.

Another corollary is the following higher-dimensional version of Proposition 15.5:

Corollary 46.3. Two maps f, g : Sn → Sn are homotopic if and only if they have
the same degree.

It is convenient to give the hypotheses of Theorem 46.1 a name.

Definition 46.4. A topological space X is said to be n-connected if πi(X) = 0 for
all i ≤ n. Similarly a pair (X,X ′) is n-connected if πi(X,X

′) = 0 for all i ≤ n.

Thus a sphere is (n− 1)-connected, and the Hurewicz Theorem in degree n holds
for (n− 1)-connected spaces. We now present a partial version of the excision axiom
for homotopy groups.
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Theorem 46.5 (The Blakers-Massey Theorem). Let X1, X2 be subspaces of X and
assume that X = X◦1 ∪ X◦2 . Set X0 = X1 ∩ X2. Assume that (X1, X0) is (n − 1)-
connected and (X2, X0) is (m − 1)-connected. Let  : (X1, X0) ↪→ (X,X2) be the
inclusion. Then πi() : πi(X1, X0)→ πi(X,X2) is an isomorphism for i < m+ n− 2
and a surjection for i = m+ n− 2.

Now let us return to weak homotopy equivalences, which were mentioned at the
end of Lecture 18.

Definition 46.6. A continuous map f : X → Y is called a weak homotopy equiv-
alence if the induced map πn(f) : πn(X,x) → πn(Y, f(x)) is an isomorphism for all
n ≥ 0 and all x ∈ X.

A natural question is: when is a weak homotopy equivalence a genuine homotopy
equivalence.

Theorem 46.7 (Whitehead’s Theorem). Let X and Y be path connected cell com-
plexes. Then a weak homotopy equivalence f : X → Y is a genuine homotopy equiv-
alence.

Whitehead’s Theorem is not saying that two cell complexes all of whose homotopy
groups are isomorphic are necessarily homotopy equivalent: indeed, there has to be
a map f : X → Y realising the given the isomorphisms. As a challenging example, I
encourage you to verify that RP 2×S3 and RP 3×S2 have the isomorphic homotopy
groups in every degree, but are not homotopy equivalent (thus by Whitehead’s The-
orem there is no map RP 2 × S3 → RP 3 × S2 that induces an isomorphism on each
homotopy group.)

Corollary 46.8. A cell complex X is contractible if and only if all its homotopy
groups vanish.

Proof. If all the homotopy groups vanish then the constant map X → ∗ is a weak
homotopy equivalence.

The next result tells us that weak homotopy equivalences behave nicely with
respect to singular homology.

Theorem 46.9. A weak homotopy equivalence f : X → Y induces an isomorphism

Hn(f) : Hn(X;A)→ Hn(Y ;A)

and
Hn(f) : Hn(Y ;A)→ Hn(X;A)

for any n ≥ 0 and any abelian group A.

Remark 46.10. Theorem 46.9 tells us that singular homology satisfies the weak
equivalence axiom in Definition 21.9, and hence we finally see that singular homology
really is (!) a homology theory.
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As a sample corollary, let us prove the following result, which was used in Problem
Sheet O.

Corollary 46.11. Let F → E
p−→ X be a fibre bundle and assume that the fi-

bre F is contractible. Then for all n ≥ 0 and any abelian group A, the map
Hn(p) : Hn(X;A)→ Hn(E;A) is an isomorphism.

Proof. By Corollary 43.17, Corollary 45.14 and Corollary 45.18, we see that πn(E) ∼=
πn(X) for all n ≥ 0, and moreover, this isomorphism is realised by the projection p.
Thus p is a weak homotopy equivalence, and thus the claim follows from Theorem
46.9.

Now let us define a special class of maps between cell complexes.

Definition 46.12. Suppose X and Y are cell complexes with skeleton filtrations
(Xn) and (Y n) respectively. A continuous map f : X → Y is said to be cellular if
f(Xn) ⊂ Y n for all n ≥ 0.

In fact, every map can be made cellular.

Theorem 46.13 (The Cellular Approximation Theorem for Maps). Every continuous
map f : X → Y between cell complexes ia homotopic to a cellular map. If f is already
cellular on a subcomplex X ′ ⊂ X then the homotopy can be chosen to be constant
on X ′.

This allows us to finish the proof of part (2) of Theorem 43.18.

Corollary 46.14. If k < n then any continuous map f : (Sk, x) → (Sn, y) is null-
homotopic rel x.

Proof. Give Sk and Sn their standard cell structure (Example 18.7) consisting of one
0-cell (which we choose to be the two basepoints x and y respectively) and one k-cell
(resp. one n-cell). By the Cellular Approximation Theorem we can homotope f rel
x to a map that carries Sk into the k-skeleton of Sn. But this is just {y}.

We now state a more precise version of Theorem 18.19.

Theorem 46.15 (The Cellular Approximation Theorem for Spaces). For any space
X, there is a cell complex ΓX and a weak homotopy equivalence γ(X) : ΓX → X.
If f : X → Y is a continuous map then there is a continuous map Γ(f) : ΓX → ΓY
which is unique up to homotopy such that the following diagram commutes:

ΓX ΓY

X Y

Γ(f)

γ γ

f

In other words: there is a cellular approximation functor Γ: Top → Cell and a
natural transformation γ : I ◦Γ→ idTop, where I : Cell→ Top is the inclusion functor.
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Remark 46.16. Combining Theorem 46.15 and Theorem 46.9 tells us that from the
point of view of (co)homology, we may always assume our spaces are cell complexes.
We used this several times during the course, for instance in the proof of Step 5 of
the Leray-Hirsch Theorem 34.7.

Finally, let us sketch the proof of the “adult” existence and uniqueness result
for homology theories (this was stated previously as Theorem 21.11—we proved the
“baby” version in Theorem 21.12.)

Theorem 46.17 (Existence and uniqueness of a homology theory). Singular homol-
ogy is a homology theory. Moreover if (H•, δ) is any homology theory then (H•, δ)
is naturally isomorphic to singular homology.

Proof (Sketch). The first statement was covered by Remark 46.10 above. Now sup-
pose (H•, δ) is any homology theory. The aim is to show that H• agrees with cellular
homology when we feed it a cell complex. Since a homology theory necessarily van-
ishes on a contractible space, by considering the exact sequence Sn−1 → Bn →
Bn
/
Sn−1 ∼= Sn and using induction, we see that any homology theory agrees with

singular homology on a sphere Sn:

Hi(Sn) ∼= Hi(S
n), ∀ i ≥ 0, n ≥ 0.

We now attempt to copy the proof of Theorem 20.5, replacing singular homology
with our given homology theory H•. One sees that if X is a cell complex, then the
corresponding reduced homology theory H̃• has the property that H̃n(X) agrees with
the nth homology of the the chain complex

· · · → H̃n(Xn/Xn−1)→ H̃n−1(Xn−1/Xn−2)→ · · ·

where each term is free on the n-cells of X. Here we are using the fact that the
axioms of a homology theory imply that H• commutes with colimits to deal with the
case when X is infinite dimensional. This complex agrees with the cellular complex
Ccell
• (X), but the two boundary maps could be very different. Thus the key step is

to show that the analogue of the Cellular Boundary Formula (Theorem 20.11) holds
for H̃•. This essentially comes down to showing that any map f : Sn → Sn of degree
k induces multiplication by k on H̃n(Sn). By Corollary 46.3 it suffices to construct a
single map f : Sn → Sn of degree k for which Hn(f) is multiplication by k. For this,
one considers a composition Sn →

∨k
i=1 S

n → Sn where we factor Sn into the k-fold
wedge of Sn. That this map induces multiplication by k is not to hard to see: one
argues as in Lemma 20.12, and uses the fact that the additivity axiom implies that
H̃• is additive on wedge sums.

Thus our arbitrary homology theory agrees with cellular homology (and hence
also singular homology) on a cell complex. The weak equivalence axiom then shows
that H• agrees with singular homology on any space. This completes the proof.

And this completes the course! Thank you everyone for coming.

4



Problem Sheet A

This Problem Sheet is based on Lecture 1 and Lecture 2. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem A.1. Let X be a topological space. Assume X can be written as an
arbitrary union

X =
⋃
i

Xi,

where each Xi is an open subspace of X. Assume we given a topological space Y
and continuous functions

fi : Xi → Y,

with the property that

fi|Xi∩Xj = fj |Xi∩Xj , ∀ i, j such that Xi ∩Xj 6= ∅.

Then there exists a unique continuous function f : X → Y such that

f |Xi = fi, ∀ i ∈ N.

Problem A.2 (†). Let C and D be categories and T : C → D a functor. Suppose f
is an isomorphism in C. Prove that T (f) is an isomorphism in D.

Problem A.3 (†). Let C and D be categories. Suppose ∼ is a congruence on C and
T : C → D is a functor. Assume that whenever f ∼ g one has T (f) = T (g). Prove
that T induces a functor T ′ : C′ → D, where C′ denotes the quotient category.

Problem A.4 (†). Show that a topological space X has the same homotopy type as
a point if and only if X is contractible.

Problem A.5. Let X a topological space. Define an equivalence relation on X × I
by (x, t) ∼ (x′, t′) if t = t′ = 1. Let CX denote the quotient space (X × I)

/
∼. We

call CX the cone on X. Prove that CX is always contractible, and deduce that any
topological space can be embedded inside a contractible one.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Solutions to Problem Sheet A

This Problem Sheet is based on Lecture 1 and Lecture 2. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem A.1. Let X be a topological space. Assume X can be written as an
arbitrary union

X =
⋃
i

Xi,

where each Xi is an open subspace of X. Assume we given a topological space Y
and continuous functions

fi : Xi → Y,

with the property that

fi|Xi∩Xj = fj |Xi∩Xj , ∀ i, j such that Xi ∩Xj 6= ∅.

Then there exists a unique continuous function f : X → Y such that

f |Xi = fi, ∀ i ∈ N.

Solution. First we prove the existence. For any x ∈ X there exists an i such that
x ∈ Xi. Set f(x) = fi(x). Clearly, f is well-defined, since for j 6= i with x ∈ Xj

we have by assumption that fi(x) = fj(x). Since x is arbitrary it suffices to prove
continuity of f at x. Note that Xi is open and f(x) = f |Xi(x) = fi(x). Since fi is
continuous at x and x ∈ Xi = int(Xi) it follows that also f is continuous at x. Now
suppose that g is another such map with the same properties. Then for every x ∈ X
we have f(x) = fi(x) = g(x). Hence f = g which proves uniqueness.

Problem A.2 (†). Let C and D be categories and T : C → D a functor. Suppose f
is an isomorphism in C. Prove that T (f) is an isomorphism in D.

Solution. Let A and B be objects of the category C such that f is a morphism
between them. By assumption f : A→ B is an isomorphism in C, hence there exists
a morphism g : B → A such that g ◦ f = idA and f ◦ g = idB. Since T is a functor we
see that idT (A) = T (idA) = T (g◦f) = T (g)◦T (f) and similarly idT (B) = T (f)◦T (g).
This proves that T (f) is an isomorphism in D.

Problem A.3 (†). Let C and D be categories. Suppose ∼ is a congruence on C and
T : C → D is a functor. Assume that whenever f ∼ g one has T (f) = T (g). Prove
that T induces a functor T ′ : C′ → D, where C′ denotes the quotient category.

Solution. On objects of the category C the functor T ′ is equal to T . On morphisms
we define T ′([f ]) : = T (f). This is well-defined, indeed for [f ] = [g] we have that
T (f) = T (g) by assumption. We need to show that T ′ satisfies the properties of a
functor. Clearly T ′([g] ◦ [f ]) = T ′([g ◦ f ]) = T (g ◦ f) = T (g) ◦T (f) = T ′([g]) ◦T ′([f ])
since T is a functor, and for any object A ∈ C, T ′([idA]) = T (idA) = idT (A) = idT ′(A).

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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Problem A.4 (†). Show that a topological space X has the same homotopy type as
a point if and only if X is contractible.

Solution.

”⇒” There exists f : X → {∗} and g : {∗} → X continuous such that g ◦ f ' idX .
But g◦f : X → {∗} → X is necessarily a constant map. Hence idX is homotopic
to a constant map, which proves that X is contractible.

”⇐” Let c : X → X be the constant map sending every point x ∈ X to a fixed
point q ∈ X and assume idX ' c. Define f : X → {∗} the constant map and
g : {∗} → X the constant map sending ∗ to q. Clearly g ◦ f = c ' idX and
f ◦ g = id{∗}. This shows that X has the homotopy type of a point.

Problem A.5. Let X a topological space. Define an equivalence relation on X × I
by (x, t) ∼ (x′, t′) if t = t′ = 1. Let CX denote the quotient space (X × I)

/
∼. We

call CX the cone on X. Prove that CX is always contractible, and deduce that any
topological space can be embedded inside a contractible one.

Solution. Let c : CX → CX denote the constant map sending every point to the
equivalence class [x, 1]. (Note that [x, 1] = [x′, 1] for any two points x and x′ in X.)
We define the homotopy H : CX × [0, 1] → CX by H([x, t], s) := [x, s + (1 − s)t].
One can see that H is a homotopy between idCX and c, which proves that CX
is contractible. Moreover, every topological space X can be embedded into the
contractible space CX via the map i : X → CX given by x 7→ [x, 0].
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Problem Sheet B

This Problem Sheet is based on Lecture 3 and Lecture 4. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem B.1 (†). Let X and Y be topological spaces. Prove that any two maps
X → Y are homotopic (in fact, nullhomotopic) if either

• Y is contractible or

• X is contractible and Y is path connected.

Problem B.2 (†). Let X, Y and Z be topological spaces. Suppose A ⊂ X and B ⊂
Y . Assume we are given two continuous maps f0, f1 : X → Y such that f0|A = f1|A
and such that fi(A) ⊂ B for i = 0, 1, and also two continuous maps g0, g1 : Y → Z
such that g0|B = g1|B. Assume that f0 ' f1 rel A and g0 ' g1 rel B. Prove that
g0 ◦ f0 ' g1 ◦ f1 rel A.

Problem B.3 (†). If (X, p) and (Y, q) are pointed spaces, prove that

π1(X × Y, (p, q)) ∼= π1(X, p)× π1(Y, q).

Problem B.4. If f : X → Y is freely nullhomotopic, prove that for any p ∈ X the
group homomorphism π1(f) : π1(X, p)→ π1(Y, f(p)) is trivial1.

Problem B.5 (†). Take (1, 0) ∈ R2 as the basepoint of S1. Prove that for any
pointed topological space, there is an isomorphism of groups:

π1(X, p) ∼= [(S1, 1), (X, p)],

where [(S1, 1), (X, p)] denotes the morphism space in hTop∗ (cf. Remark 4.8.)

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
1Recall a group homomorphism φ : G → H between two groups G and H is called trivial if φ(g) = 1

for all g ∈ G, where 1 is the identity element in H.
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Solutions to Problem Sheet B

This Problem Sheet is based on Lecture 3 and Lecture 4. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem B.1 (†). Let X and Y be topological spaces. Prove that any two maps
X → Y are homotopic (in fact, nullhomotopic) if either

• Y is contractible or

• X is contractible and Y is path connected.

Solution. First suppose that Y is contractible. Let F : Y × I → Y be a homotopy
between idY and the constant map c(y) ≡ p for a fixed point p ∈ Y . I.e. F (·, 0) = idY
and F (·, 1) = c. Let f : X → Y be a continuous map. We want to show that f is
homotopic to the constant map c̃ : X → Y with c̃(x) ≡ p. We define the homotopy

H : X × I → Y
(x, t) 7→ F (f(x), t).

Clearly, H(x, 0) = F (f(x), 0) = idY (f(x)) = f(x) and H(x, 1) = F (f(x), 1) =
c(f(x)) = c̃(x). Hence, f is homotopic to a constant map and hence null homotopic.

Now assume that X is contractible and Y is path connected. Since X is con-
tractible there exists a homotopy

F : X × I → X,

such that F (·, 0) = idX and F (·, 1) = c with c(x) ≡ q for every x ∈ X and for a
fixed q ∈ Y . Let f : X → Y be a continuous map. We want to show that f is
nullhomotopic. We define

H : X × I → Y
(x, t) 7→ f(F (x, t)).

Then we have H(x, 0) = f(F (x, 0)) = f(x) and H(x, 1) = f(F (x, 1)) ≡ f(q) a
constant map. Note that two constant maps are homotopic if their image (a point)
lies in the same path component. Indeed, let c0 : X → Y and c1 : X → Y be two
constant maps with ci(x) ≡ qi for i = 1, 2. Let γ : I → Y be a path in Y such that
γ(0) = q0 and γ(1) = q1. Then the map H(x, t) := γ(t) defines a homotopy between
c0 and c1. (In fact, two constant maps are homotopic if and only if their image lies
in the same path component.)

Since Y is path connected any two constant maps are homotopic. Moreover, since
homotopy is an equivalence relation, it follows that any two null homotopic maps are
also homotopic.
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Problem B.2 (†). Let X, Y and Z be topological spaces. Suppose A ⊂ X and B ⊂
Y . Assume we are given two continuous maps f0, f1 : X → Y such that f0|A = f1|A
and such that fi(A) ⊂ B for i = 0, 1, and also two continuous maps g0, g1 : Y → Z
such that g0|B = g1|B. Assume that f0 ' f1 rel A and g0 ' g1 rel B. Prove that
g0 ◦ f0 ' g1 ◦ f1 rel A.

Solution. Let F : X × I → Y be a homotopy rel A between f0 and f1. Let G : Y ×
I → Z be a homotopy rel B between g0 and g1. Then the map

H : X × I → Z
(x, t) 7→ G(F (x, t), t)

is a homotopy between g0 ◦ f0 and g1 ◦ f1. Moreover, for a point a ∈ A we have by
assumption that F (a, t) = f0(a) = f1(a) ∈ B for and for every b ∈ B we have that
G(b, t) = g0(b) = g1(b). Hence H(a, t) = G(F (a, t), t) = g0(f0(a)) = g1(f1(a)).

Problem B.3 (†). If (X, p) and (Y, q) are pointed spaces, prove that

π1(X × Y, (p, q)) ∼= π1(X, p)× π1(Y, q).

Solution. Define φ : π1(X, p)×π1(Y, q)→ π1(X×Y, (p, q)) as follows. Let u and v be
representatives of the classes [u] ∈ π1(X, p) and [v] ∈ π1(Y, q). Put φ([u], [v]) := [w],
where

w : I → X × Y
t 7→ (u(t), v(t)).

Now we define a map ψ : π1(X×Y, (p, q))→ π1(X, p)×π1(Y, q). Let p1 : X×Y → X
and p2 : X × Y → Y denote the two obvious projections. For a map w : I → X × Y
representing a class [w] ∈ π1(X × Y, (p, q)) we define ψ([w]) := ([p1 ◦ w], [p2 ◦ w]) ∈
π1(X, p)× π1(Y, q). Clearly φ ◦ ψ = idπ1(X×Y,(p,q)) and ψ ◦ φ = idπ1(X,p)×π1(Y,q).

Problem B.4. If f : X → Y is freely nullhomotopic, prove that for any p ∈ X the
group homomorphism π1(f) : π1(X, p)→ π1(Y, f(p)) is trivial1.

Solution. Here are two different proofs:

1. First consider the special case where f is actually the constant map c(x) = q.
Then the result is obvious: the induced homomorphism π1(c) : π1(X, p) →
π1(Y, q) is trivial, since if u is any loop based at p then c◦u is the constant loop
eq.

Now for the general case: suppose F : c ' f where c is the constant map
c(x) = q. Fix p ∈ X, and let w(s) := F (p, s), so that w is a path from q to
f(p). Then by Proposition 4.13, we can write

π1(f) = λw ◦ π1(c)

as maps π1(X, p)→ π1(Y, f(p)). Thus for any [u] ∈ π1(X, p),

π1(f)[u] = λw(π1(c)[u]) = λw[q] = [f(p)],

and hence π1(f) is trivial.

1Recall a group homomorphism φ : G → H between two groups G and H is called trivial if φ(g) = 1
for all g ∈ G, where 1 is the identity element in H.
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2. Now for a different approach. Let F : X × I → Y be a free homotopy between
f and the constant map c(x) ≡ q. For a class [u] ∈ π1(X, p) the map

G : S1 × I → Y

(s, t) 7→ F (u(s), t)

defines a free homotopy between f ◦ u and c ◦ u. In other words, the map
f ◦ u : S1 → Y is freely nullhomotopic. Hence, by Proposition 2.15 the map
f ◦ u extends to a map g : D2 → Y , where D2 is the disk with boundary S1,
so have g|S1 = f ◦ u. Because D2 is contractible, we know that there exists a
homotopy relative 1

K : D2 × I → D2

such that K(x, 0) = idD2 , K(x, 1) ≡ 1∀x and K(1, t) = 1∀t. This gives rise to
a homotopy relative f(p) between the loops f ◦ u and the constant loop f(p).
Indeed, define

H : S1 × I → Y
(s, t) 7→ g(K|S1(s, t)).

Therefor for every [u] ∈ π1(X, p) we have π1(f)[u] = [f ◦ u] ∼= [f(p)], which is
the identity in π1(Y, f(p)).

Problem B.5 (†). Take (1, 0) ∈ R2 as the basepoint of S1. Prove that for any
pointed topological space, there is an isomorphism of groups:

π1(X, p) ∼= [(S1, 1), (X, p)],

where [(S1, 1), (X, p)] denotes the morphism space in hTop∗ (cf. Remark 4.8.)

Solution. Consider the continuous map ω : I → S1 defined by ω(s) := exp |I , where
exp was defined in Definition 5.1. If u is a loop in X, then û := u ◦ ω−1 is a well-
defined continuous map û : S1 → X. Moreover if u and v are loops with u ' v rel
∂I via a homotopy ut(s) then û ' v̂ rel 1 via the homotopy ût(x) = ut ◦ ω−1(x).
Similarly if u0, u1, v0, v1 are four loops such that u0(0) = v0(0), u0 ' u1 rel ∂I and
v0 ' v1 rel ∂I, then (u0 ∗ v0) ◦ ω−1 ' (u1 ∗ v1) ◦ ω−1 rel 1.

This means that there is a well defined function π1(X, p) → [(S1, 1), (X, p)] that
sends [u] to [u ◦ ω−1]. This function is in fact a bijection, as the inverse is given by
[û] 7→ [û ◦ ω]. Moreover, we can use this bijection to give [(S1, 1), (X, p)] a group
structure: given loops u, v set w = u ∗ v and define

[û] ∗ [v̂] := [ŵ].

With this definition the RHS has a group structure and our bijection is in fact an
isomorphism of groups.
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Problem Sheet C

This Problem Sheet is based on Lecture 5 and Lecture 6. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem C.1. Let C be a category, and let C1, C2 be two objects in C. The coprod-
uct of C1 and C2 is triple (C, f1, f2), where C is another object in C, and f1 : C1 → C
and f2 : C2 → C are morphisms which satisfy the following universal property: if D
is any other object in C and g1 : C1 → D and g2 : C2 → D are any two morphisms,
then there exists a unique morphism h : C → D such that the following diagram
commutes:

C

C1 C2

D

h

f1

g1

f2

g2

1. Prove that if the coproduct exists then it is unique up to isomorphism.

2. Prove that the coproduct exists in Groups. Hint: Show that the free product
G ∗H is the coproduct of G and H.

Problem C.2. Given two pointed spaces (X, p) and (Y, q), we define their wedge
product X ∨ Y as the subset of X × Y :

X ∨ Y := {(x, y) ∈ X × Y | x = p or y = q} .

We can view X ∨ Y as a pointed space with basepoint (p, q). Inductively, one can
also define the k-fold wedge

∨k
i=1Xi of k pointed spaces (Xi, pi). Compute the

fundamental group of the k-fold wedge1 of the circle S1.

Problem C.3 (†). Consider the square I × I and identify the edges as indicated
in Figure C.1. This gives us three different topological spaces: the torus T 2, the
real projective plane RP 2 and the Klein bottle. Compute the three fundamental
groups.

Problem C.4 (?). Consider the complex plane C. Given R > 0, let ΣR denote the
set

ΣR := {z ∈ C | |z| = R} .

1. Show that ΣR has the same homotopy type as C \ {0} for each R > 0.

2. Let PnR : ΣR → C \ {0} denote the restriction to ΣR of the map z 7→ zn. Show
that PnR is never freely nullhomotopic.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
1This space is often called a “bouquet of circles”.
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Figure C.1: Three ways to identify edges of I × I.

3. Deduce the Fundamental Theorem of Algebra: that every nonconstant complex
polynomial has a complex root.

Problem C.5 (?). Let (X, p) be a pointed space. Assume there is a pointed contin-
uous map m : (X ×X, (p, p))→ (X, p) with the property that the pointed maps

m1 : (X, p)→ (X, p), m1(x) := m(x, p)

and
m2 : (X, p)→ (X, p), m2(x) := m(p, x)

are both homotopic to idX rel p. Prove that π1(X, p) is abelian.
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Solutions to Problem Sheet C

This Problem Sheet is based on Lecture 5 and Lecture 6. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem C.1. Let C be a category, and let C1, C2 be two objects in C. The co-
product of C1 and C2 is triple (C, f1, f2), where C is another object in C, and
f1 ∈ Hom(C1, C) and f2 ∈ Hom(C2, C), which satisfies the following universal prop-
erty: if D is any other object in C and g1 ∈ Hom(C1, D) and g2 ∈ Hom(C2, D) are
any two morphisms, then there exists a unique morphism h ∈ Hom(C,D) such that
the following diagram commutes:

C

C1 C2

D

h

f1

g1

f2

g2

1. Prove that if the coproduct exists then it is unique up to isomorphism.

2. Prove that the coproduct exists in Groups. Hint: Show that the free product
G ∗H is the coproduct of G and H.

Solution.

1. Suppose (C, f1, f2) and (C̃, f̃1, f̃2) are two coproducts. By the universal property
of (C, f1, f2) there exists a unique h : C → C̃ such that the following diagram
commutes.

C

C1 C2

C̃.

h

f1

f̃1

f2

f̃2

Similarly there exists a unique h̃ such that the next diagram also commutes.

C̃

C1 C2

C.

h̃

f̃1

f1

f̃2

f2

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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We need to show that h ◦ h̃ = idC̃ and h̃ ◦ h = idC . Notice that

h̃ ◦ h ◦ f1 = h̃ ◦ f̃1 = f1

h̃ ◦ h ◦ f2 = h̃ ◦ f̃2 = f2

and
h ◦ h̃ ◦ f̃1 = h ◦ f1 = f̃1

h ◦ h̃ ◦ f̃2 = h ◦ f2 = f̃2.

Consider the diagram

C

C1 C2

C.

Φ

f1

f1

f2

f2

Again by the universal property of the coproduct (C, f1, f2) there exists a unique
φ such that the above diagram commutes. The identity idC fulfils this property
and hence by the uniqueness of the map φ we have that φ = idC . But also h̃◦h
fulfils this property. Hence idC = φ = h̃ ◦ h. It follows from a similar argument
that idC̃ = h ◦ h̃.

2. Let G ∗ H denote the free product of G and H. Let i1 : G → G ∗ H and
i2 : H → G ∗H be the inclusions. We show that (G ∗H, i1, i2) is the coproduct
of G abd H. Given a third group K and two morphisms φ1 : G → K and
φ2 : H → K. Then we define the map

η : G ∗H → K
g1h1 · · · grhr 7→ φ1(g1)φ2(h2) · · ·φ1(gr)φ2(hr).

We can see that η ◦ i1 = φ1 and η ◦ i2 = φ2. The uniqueness of η follows
from the fact that η has to be a group homomorphism and thus must satisfy
η(g1h1 · · · grhr) = η(g1)η(h1) · · · η(gr)η(hr) = φ1(g1)φ2(h2) · · ·φ1(gr)φ2(hr).

Problem C.2. Given two pointed spaces (X, p) and (Y, q), we define their wedge
product X ∨ Y as the subset of X × Y :

X ∨ Y := {(x, y) ∈ X × Y | x = p or y = q} .

We can view X ∨ Y as a pointed space with basepoint (p, q). Inductively, one can
also define the k-fold wedge

∨k
i=1Xi of k pointed spaces (Xi, pi). Compute the

fundamental group of the k-fold wedge1 of the circle S1.

Solution. We use the Seifert-van Kampen theorem to compute the fundamental
group. First we note that this theorem can be applied recursively and that the free
product with amalgamation is associative in the sense that (A ∗B) ∗C = A ∗ (B ∗C)
for groups A, B and C. Hence the Seifert-van Kampen theorem can be generalised

1This space is often called a “bouquet of circles”!
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to the case of a topological space X = X1 ∪ . . . ∪Xk, where the Xi are open subsets
and X1 ∩ . . .∩Xk is non-empty and path connected. We assume that the base point
of the k-fold wedge product of S1 is the point (1, . . . , 1). Then

∨k
i=1 S

1 looks like the
union of k copies of S1 with one point in common. The common point is (1, . . . , 1).
Let Uε be a small neighbourhood of 1 inside the circle S1, such that Uε is contractible.

For i = 1, . . . , k let Xi be the set Uε ∨ . . . Uε ∨ S1 ∨ Uε ∨ . . . ∨ Uε, where the S1

is at the ith position. The sets Xi are open and X1 ∩ . . . ∩ Xk is non-empty and
path connected. Moreover X1 ∩ . . . ∩Xk = Uε ∨ . . . ∨ Uε it is contractible and hence
simply connected. We know from the lecture that π1(S1, 1) ∼= Z. Thus is follows
from Corollary 6.6 that

π1(
k∨
i=1

S1, (1, . . . , 1)) ∼= Z∗k,

where Z∗k denotes the k-fold free product of Z.

Problem C.3 (†). Consider the square I × I and identify the edges as indicated in
Figure C.1. This gives us three different topological spaces: the torus T 2, the real
projective plane RP 2 and the Klein bottle. Use the Seifert-van Kampen theorem

Figure C.1: Three ways to identify edges of I × I.

to compute the three fundamental groups.

Solution.

1. We choose the first open subset X1 of the torus to be an open ball in the
interior of the square. The second open subset X2 is chosen to be a open
subset containing the complement of X1. (See figure C.2.) The set X1 is
contractible and thus simply connected. Moreover, X2 is homotopy equivalent
to the boundary of the rectangle, where the edges are identified as indicated in
the picture. Thus X2 has the homotopy type of S1 ∨ S1. (See Figure C.2.) Let
a and b denote the two generators of π1(X2, p) ∼= π1(S1∨S1, p) ∼= Z∗Z. Cleary,
X1 ∩ X2 has the homotopy type of S1. Note that π1(ı1)

(
π1(X1 ∩ X2), p)

)
⊂

π1(X1, p) is trivial, since π1(X1, p) = 1. We need to compute the subgroup
π1(ı2)

(
π1(X1 ∩ X2), p)

)
⊂ π1(X2, p). The map π1(ı2) sends the generator of

π1(X1 ∩ X2, p) to the loop corresponding to the word aba−1b−1. Therefore
π1(X, p) is the quotient of the free product of π1(X1, p) and π1(X2, p) by the
normal subgroup generated by elements of the form aba−1b−1 = 1. This means
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that a and b commute. By Corollary 6.6 we conclude that

π1(T 2, p) ∼= π1(X2, p)/π1(ı2)
(
π1(X1 ∩X2), p)

) ∼= 〈a, b|ab = ba〉 ∼= Z⊕ Z.

Figure C.2: The torus T 2

2. As before, let X1 be an open ball in the interior of the square and X2 a small
open neighbourhood of the complement of X1. (See Figure C.3.) Then X1 is
again simply connected and X2 has the homotopy type of a circle S1. Note
that c := ab is a generator for π1(X2, p). The map π1(ı2) sends the generator of
π1(X1∩X2, p) to the loop abab in π1(X2, p). Moreover π1(ı1)(π1(X1∩X2, p) = 1
since X1 is simply connected. Therefore

π1(RP 2, p) ∼= π1(X2, p)/π1(ı2)
(
π1(X1 ∩X2), p)

) ∼= 〈c|cc = 1〉 ∼= Z2.

Figure C.3: The projective plane RP 2

3. Let K denote the Klein bottle. Let X1 be an open ball in the interior of the
square and X2 a small open neighbourhood of the complement of X1. (See
Figure C.4.) The set X1 is simply connected and X2 has the homotopy type
of S1 ∨ S1. Let a and b denote the edges of the square. Then a and b are
generators for π1(X2, p) ∼= π1(S1 ∨ S1, p). The loop corresponding to the word
aba−1b is contractible in X1. Therefore we have

π1(X2, p)/π1(ı2)
(
π1(X1 ∩X2), p)

) ∼= 〈a, b|aba−1b = 1〉.

4



Figure C.4: The Klein bottle

4.

Problem C.4 (?). Consider the complex plane C. Given R > 0, let ΣR denote the
set

ΣR := {z ∈ C | |z| = R} .

1. Show that ΣR has the same homotopy type as C \ {0} for each R > 0.

2. Let PnR : ΣR → C \ {0} denote the restriction to ΣR of the map z 7→ zn. Show
that PnR is never freely nullhomotopic for n > 0.

3. Deduce the Fundamental Theorem of Algebra: that every nonconstant complex
polynomial has a complex root.

Solution.

1. We define the map
rR : C \ {0} → ΣR

z 7→ z
|z|R

and the inclusion i : ΣR ↪→ C \ {0}. Then rR ◦ i = idΣR . Moreover, the map

H : C \ {0} × I → C \ {0}
(z, t) 7→ z(1− t) + z

|z|Rt

is a homotopy between i ◦ rR = H(·, 1) and H(·, 0) = idC\{0}.

2. Suppose by contradiction that PnR : ΣR → C \ {0} is freely nullhomotopic. Let
F : PnR ' c be a homotopy to the constant map c(z) ≡ p. Then PnR extends to
the map

f : DR → C \ {0}

z 7→

{
p, 0 ≤ |x| ≤ R

2 ,

F ( z
|z|R, 2−

2
R |z|),

R
2 ≤ |x| ≤ R,

where DR is the disk with radius R and centre 0. The set DR is contractible
and f is continuous. For simplicity we assume w.l.o.g. that R = 1, so that DR

is the unit ball B2. We have group homomorphisms

π1(B2, 1)
π1(f)−−−→ π1(C \ {0}, 1)

π1(r1)−−−−→ π1(S1, 1).

5



But π1(B2, 1) = {1} and π1(r1) ◦ π1(f) maps the contractible loop t→ eit2π in
B2 to n times the generator in π1(S1, 1). This is a contradiction.

3. Consider the polynomial with complex coefficients:

g(z) = zn + an−1z
n−1 + . . . a1z + a0.

First we show that g|ΣR is homotopic in C \ {0} to the polyominal PnR|ΣR .
Choose R > max{1,

∑n−1
i=0 |ai|}. Define the map

H : ΣR × I → C
(z, t) 7→ zn +

∑n−1
i=0 (1− t)aizi.

If we can show thatH(z, t) is never zero then the image ofH lies in C\{0} andH
is a homotopy between g(z)|ΣR and PnR(z) in C\{0}. Suppose by contradiction
that there exists a t ∈ I and a z with |z| = R such that H(z, t) = 0. Then we
have zn =

∑n−1
i=0 (1− t)aizi. The triangle inequality gives

Rn ≤
n−1∑
i=0

(1− t)|ai|Ri ≤
n−1∑
i=0

|ai|Ri ≤

(
n−1∑
i=0

|ai|

)
Rn−1.

If R > 1 we have R ≤
∑n−1

i=0 |ai|, which contradicts the choice of R.

Assume now that g has no complex roots. Define G : ΣR × I → C \ {0} by
G(z, t) = g((1 − t)z). (Since g has no root the values of G do lie in C \ {0}.)
Visibly, G is a homotopy of g|ΣR in C\{0} to the constant map a0. Therefore g is
nullhomotopic and, by transitivity, PnR is nullhomotopic, contradicting part (2).

Problem C.5 (?). Let (X, p) be a pointed space. Assume there is a pointed map
m : (X ×X, (p, p))→ (X, p) with the property that the pointed maps

m1 : (X, p)→ (X, p), m1(x) := m(x, p)

and
m2 : (X, p)→ (X, p), m2(x) := m(p, x)

are both homotopic to idX rel p. Prove that π1(X, p) is abelian.

Solution. In Problem B.3, we proved that Φ : π1(X, p) × π1(X, p) → π1(X ×
X, (p, p)), defined by ([u], [v])→ [(u, v)], is an isomorphism, where (u, v) is the path
in X×X given by s 7→ (u(s), v(s)). Choose [u], [v] ∈ π1(X, p). Let c : X → X be the
constant path c(x) ≡ p. Note that m1 = m ◦ (idX , c) and m2 = m ◦ (c, idX). Now

[v] = π1(idX)[v]
= π1(m2)[v], as m2 ' idX
= π1(m ◦ (c, idX))[v]
= π1(m)([c ◦ v, v])
= π1(m) ◦ Φ([c ◦ v], [v]),
= π1(m) ◦ Φ([p], [v]), as c ◦ v = ep

6



where [p] is the identity element in π1(X, p). Similarly,

[u] = π1(m) ◦ Φ([u], [p]).

Now observe that as elements of π1(X, p)× π1(X, p), one has

([u], [v]) = ([p], [v]) · ([u], [p]).

Since π1(m) ◦ Φ : π1(X, p)× π1(X, p)→ π1(X, p) is a homomorphism, we have

π1(m) ◦ Φ([u], [v]) = π1(m) ◦ Φ
(
([p], [v]) · ([u], [p])

)
= π1(m) ◦ Φ([p], [v]) · π1(m) ◦ Φ([u], [p])
= [v][u].

If instead one factors ([u], [v]) = ([u], [p]) · ([p], [v]), the same reasoning shows that
π1(m)◦Φ([u], [v]) = [u][v]. We conclude that [v][u] = [u][v], hence π1(X, p) is abelian.
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Problem Sheet D

This Problem Sheet is based on Lecture 7 and Lecture 8. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem D.1 (†). Some questions on (free) abelian groups:

1. Prove that every abelian group G is isomorphic to a quotient group of the form
F/R, where F is a free abelian group.

2. Prove that every any two bases of a free abelian group have the same cardinality
(and thus the notion of the rank of a free abelian group is well-defined).

3. Prove that two free abelian groups are isomorphic if and only if they have the
same rank.

4. Prove that if G is an arbitrary abelian group then there exists a free abelian
subgroup F of G such that G/F is torsion.

Problem D.2 (†). Let P = [z0, z1, . . . , zn] denote an n-simplex, where n ≥ 1. Con-
struct an explicit homeomorphism (P, ∂P )→ (Bn, Sn−1).

Problem D.3 (†). Let X be a one-point space {p}. Prove1 that Hn(X) = 0 for all
n > 0.

Problem D.4 (†). Let X be a topological space. Let {Xλ | λ ∈ Λ} denote the path
components of X. Prove that for every n ≥ 0 one has2

Hn(X) ∼=
⊕
λ∈Λ

Hn(Xλ).

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
1This is called the dimension axiom.
2In general, if {Gλ | λ ∈ Λ} is a collection of groups, an element of

⊕
λ∈ΛGλ is a tuple (gλ) where all

but finitely many of the gλ are equal to the identity.
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Solutions to Problem Sheet D

This Problem Sheet is based on Lecture 7 and Lecture 8. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem D.1 (†). Some questions on (free) abelian groups:

1. Prove that every abelian group G is isomorphic to a quotient group of the form
F/R, where F is a free abelian group.

2. Prove that any two bases of a free abelian group have the same cardinality (and
thus the notion of the rank of a free abelian group is well-defined).

3. Prove that two free abelian groups are isomorphic if and only if they have the
same rank.

4. Prove that if G is an arbitrary abelian group then there exists a free abelian
subgroup F of G such that G/F is torsion.

Solution.

1. For an abelian group G let F (G) be the free abelian group generated by the
set G. Let B be a basis of F (G). Since G generates F (G) we can assume that
B ⊂ G. By Lemma 7.2 there exists a unique group homomorphsim φ : F (G)→
G such that φ(b) = b for every b ∈ B. Clearly, φ|G = IdG and hence φ is
surjective. Let R := kerφ then G ∼= F (G)/R.

2. Let p be prime. A free abelian group is a Z-module. Then G/pG is a module
over Z/pZ. But Z/pZ is a field and thus G/pG is a vector space over Z/pZ.
A basis B of G induces a basis of G/pG as a vector space over Z/pZ and they
have the same cardinality. (The basis of G/pG is given by {b + pZ | b ∈ B}.)
Any two bases of a vector space have the same cardinality.

3. Here are two proofs:

Two free abelian groups F and G are isomorphic if and only if the vector spaces
F/pF and G/pG are isomorphic. Hence, they are isomorphic if and only if their
bases have the same cardinality.

Let F and G be two isomorphic free abelian groups and φ an isomorphism
between them. Let B be a basis of F . Since φ is bijective and a group homo-
morphism it follows that φ(B) is a basis of G and |B| = |φ(B)|. For the other
direction, let B be a basis of F and B′ a basis of G and suppose that |B| = |B′|.
Let φ : B → B′ be a bijection and ψ : B′ → B its inverse. By Lemma 7.2 there
exists a unique group homomorphism φ̃ : F → G such that φ̃(b) = φ(b) for
every b ∈ B. Similarly there exists a unique ψ̃ : G→ F such that ψ̃(b′) = ψ(b′)
for every b′ ∈ B′. Since B and B′ generate F and G and φ̃ and ψ̃ are group
homomorphisms it follows that φ̃ : F → G is a group isomorphism with inverse
ψ̃ : G→ F .

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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4. Define a subset A of G to be independent if ∀ai ∈ A and ∀zi ∈ Z if
∑

i ziai = 0
then necessarily zi = 0 ∀i. By Zorn’s Lemma a maximal independent set exists,
call it B. Let F be the free abelian subgroup of G generated by B. Then G/F
is torsion by maximality of B.

Here is another proof which is more constructive (i.e. it does not need Zorn’s
Lemma), but only1 works for finitely generated groups. Let T := {g ∈ G |
g is torsion} be the torsion subgroup. This is a normal subgroup of G and G/T
is free. Then there exists a short exact sequence

0 T G G/T 0.i p

(Short exact sequences will soon be defined in Lecture 12.) Since G/T is free the
sequence is split, i.e. there exists a map s : G/T → G, such that p ◦ s = idG/T
and r : G→ T such that r ◦ i = idT (you will prove this on Problem Sheet F.)
The group homomorphism s is injective and s(G/T ) < G is a free subgroup.
Moreover, G/s(G/T ) ∼= T is torsion.

Problem D.2 (†). Let P = [z0, z1, . . . , zn] denote an n-simplex, where n ≥ 1. Con-
struct an explicit homeomorphism (P, ∂P )→ (Bn, Sn−1).

Solution. Let b denote the barycentre of the n-simplex P . Since P is convex, for a
point x ∈ P \ {b} the line spanned by ~x −~b intersects ∂P at a unique point, which
we call s(x). Define

φ : (P, ∂P ) → (Bn, ∂Bn)

x 7→ ~x−~b
| ~s(x)−~b|

b 7→ 0.

This is a bijective continuous map between compact Hausdorff spaces, and hence is
a homeomorphism.

Problem D.3 (†). Let X be a one-point space {∗}. Prove2 that Hn(X) = 0 for all
n > 0.

Solution. For every n ≥ 0 the group of n-chains Cn(X) has exactly one generator,
namely the constant n-chain κn : ∆n → {∗}. The boundary of the constant n-chain
κn is precisely

∂κn =

n∑
i=0

(−1)iκn ◦ εi =

n∑
i=0

(−1)iκn−1 =


κn−1, n even and ≥ 2,

0, n odd and ≥ 1,

0, n = 0,

(Recall that the boundary of a 0-chain is by definition zero.) Hence, the group Zn(X)
of singular n-chains is

Zn(X) =


0, n even and ≥ 0,

Cn(X) = Z · κn, n odd and ≥ 1,

Cn(X) = Z · κn, n = 0,

,

1Thanks to “asdf” for pointing this out! The group (Q,+) (which is not finitely generated) is a
counterexample since it has zero torsion subgroup but is not free.

2This is called the dimension axiom.
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and

Bn(X) =

{
0, n even and ≥ 0,

Cn(X) = Z · κn, n odd and ≥ 1,
.

In both cases we conclude that Hn(X) = Zn(X)/Bn(X) = 0 for every n ≥ 1. In
dimension zero Z0(X) = Z · κ0 and B0(X) = 0 which shows that H0(X) ∼= Z.

Problem D.4 (†). Let X be a topological space. Let {Xλ | λ ∈ Λ} denote the path
components of X. Prove that for every n ≥ 0 one has3

Hn(X) ∼=
⊕
λ∈Λ

Hn(Xλ).

Solution. Since an n-chain is continuous and an n-simplex is path connected, its
image must lie inside one path component. Hence Cn(X) ∼=

⊕
λ∈ΛCn(Xλ). More-

over the boundary of an n-chain must lie in the same path component, i.e. the
boundary operator can be written as a sum of operators

∑
∂λ :

⊕
λ∈ΛCn(Xλ) →⊕

λ∈ΛCn−1(Xλ). Therefore we have for every λ: Bn(Xλ) ⊆ Zn(Xλ) ⊆ Cn(Xλ),
which implies

Hn(X) ∼=
⊕
λ∈Λ

Hn(Xλ).

3In general, if {Gλ | λ ∈ Λ} is a collection of groups, an element of
⊕

λ∈ΛGλ is a tuple (gλ) where all
but finitely many of the gλ are equal to the identity.
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Problem Sheet E

This Problem Sheet is based on Lecture 9 and Lecture 10. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem E.1 (†). Let G be a group. Prove that there exists at most one abelian
group A and a group homomorphism p : G → A satisfying the following universal
property : if A′ is any other abelian group and ϕ : G→ A′ is a homomorphism, then
ϕ induces a unique homomorphism ϕ̃ : A→ A′:

G A′

A

ϕ

p
ϕ̃

Prove that taking A = Gab := G
/

[G,G] and p the quotient map solves this universal
property.

Problem E.2 (†). Prove that the Hurewicz map is natural1. That is, suppose
f : (X, p)→ (Y, q) is a pointed map. Prove that the following diagram commutes:

π1(X, p) π1(Y, q)

H1(X) H1(Y )

π1(f)

hp hq

H1(f)

Problem E.3 (†). Let u : I → X be a (not necessarily closed) path. Prove that:

1. The singular 1-chain u′+ ū′ belongs to Z1(X), where we are using the notation
convention from Remark 9.1, and hence 〈u′ + ū′〉 is a well defined homology
class.

2. Prove that 〈u′ + ū′〉 = 0 ∈ H1(X).

Problem E.4 (†). Suppose u, v, w are three not necessarily closed paths in X. As-
sume that u(1) = v(0) and v(1) = w(0) and w(1) = u(0), so the concatenation
u ∗ v ∗ w is well defined and is a loop. Prove that:

1. The singular 1-chain u′+v′+w′ belongs to Z1(X) and hence defines a homology
class 〈u′ + v′ + w′〉.

2. Since u ∗ v ∗w is a loop, we know from Proposition 9.2 that (u ∗ v ∗w)′ belongs
to Z1(X) and hence determines a homology class 〈(u ∗ v ∗ w)′〉. Prove that
actually,

〈(u ∗ v ∗ w)′〉 = 〈u′ + v′ + w′〉.
Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.

1The precise meaning of the word “natural” and why this exercises means h is natural will be explained
at the end of the course when we study natural transformations.
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Problem E.5 (†). Prove that a sequence A•
f−→ B•

g−→ C• is exact in Comp if and

only if An
fn−→ Bn

gn−→ Cn is exact in Ab for every n ∈ Z.

Problem E.6 (†). Suppose {(Cλ• , ∂λ) | λ ∈ Λ} is a family of complexes indexed by a
set Λ. Recall their direct sum is the complex

⊕
λC

λ
• equipped with the boundary

operator
∑

λ ∂
λ. Prove that for all n ≥ 0,

Hn

(⊕
λ

Cλ•

)
=
⊕
λ

Hn(Cλ• ).

2



Solutions to Problem Sheet E

This Problem Sheet is based on Lecture 9 and Lecture 10. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem E.1 (†). Let G be a group. Prove that there exists at most one abelian
group A and a group homomorphism p : G → A satisfying the following universal
property : if A′ is any other abelian group and ϕ : G→ A′ is a homomorphism, then
ϕ induces a unique homomorphism ϕ̃ : A→ A′:

G A′

A

ϕ

p
ϕ̃

Prove that taking A = Gab := G
/

[G,G] and p the quotient map solves this universal
property.

Solution. The fact that there exists at most once such pair (A, p) is the “usual”
universal property argument. If (A, p) and (A′, p′) were two pairs then we would
get unique homomorphisms ϕ : A → A′ and ϕ′ : A′ → A such that ϕ ◦ p = p′ and
ϕ′ ◦ p′ = p. But then ϕ′ ◦ ϕ : A → A satisfies (ϕ′ ◦ ϕ) ◦ p = p. By uniqueness,
ϕ′ ◦ ϕ = idA. Similarly ϕ ◦ ϕ′ = idA′ .

Let A = Gab := G
/

[G,G] and p : G → G
/

[G,G] the quotient map. We want
to show that (G, p) fulfills the universal property. Let A′ be an abelian group and
φ : G → A′ a group homomorphism. Define φ̃ : A → A′ by φ̃([a]) := φ(a), where
[a] ∈ A with representative a ∈ G. This is well-defined since φ(gh−hg) = φ(g)φ(h)−
φ(h)φ(g) = 0 for every g, h ∈ G and hence φ descends to the quotient G

/
[G,G]. It

is easy to see that φ̃ ◦ p = φ. Uniqueness of the map φ̃ also follows directly from its
definition. Suppose ψ̃ is another such homomorphism. Then ψ̃([g]) = φ(g) = φ̃([g]),
which shows that ψ̃ = φ̃.

Problem E.2 (†). Prove that the Hurewicz map is natural1. That is, suppose
f : (X, p)→ (Y, q) is a pointed map. Prove that the following diagram commutes:

π1(X, p) π1(Y, q)

H1(X) H1(Y )

π1(f)

hp hq

H1(f)

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
1The precise meaning of the word “natural” and why this exercises means h is natural will be explained

at the end of the course when we study natural transformations.
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Solution. Recall that π1(f)([u]) := [f ◦ u] and H1(f)([
∑

i aiσi]) := [
∑

i aif ◦ σi].
Since all maps involved are group homomorphism is suffices to show that the diagram
commutes for a generator [u] ∈ π1(X, p). Then hq ◦ π1(f)([u]) = 〈(f ◦ u)′〉 and
H1(f) ◦ hp([u]) = 〈f ◦ (u)′〉). But (f ◦ u)′(s0, s1) = f ◦ u(s1) = f ◦ u′(s0, s1), which
proves the claim.

Problem E.3 (†). Let u : I → X be a (not necessarily closed) path. Prove that:

1. The singular 1-chain u′+ ū′ belongs to Z1(X), where we are using the notation
convention from Remark 9.1, and hence 〈u′ + ū′〉 is a well defined homology
class.

2. Prove that 〈u′ + ū′〉 = 0 ∈ H1(X).

Solution.

1. We check ∂(u′ + ū′) = u(1) − u(0) + ū(1) − ū(0) = 0, since ū(1) = u(o) and
ū(0) = u(1).

2. Let σ : ∆2 → X be the simplex defined by σ(s0, s1, s2) := u(s1). Then σ ◦ ε2 =
u′, σ ◦ ε0 = ū′ and σ ◦ ε1 = κ1, where κ1 : ∆1 → X denotes the constant
1-chain with image u(0). We calculate the boundary ∂σ = u′ + ū′ − κ1. Now
κ1 itself is a boundary. Indeed, let κ2 : ∆2 → X denote the constant 2-chain
with image u(0). Then ∂κ2 = κ1 (cf. the solution to Problem D.3.) Hence
〈u′ + ū′〉 = 〈u′ + ū′ − κ1〉 = 0.

Problem E.4 (†). Suppose u, v, w are three not necessarily closed paths in X. As-
sume that u(1) = v(0) and v(1) = w(0) and w(1) = u(0), so the concatenation
u ∗ v ∗ w is well defined and is a loop. Prove that:

1. The singular 1-chain u′+v′+w′ belongs to Z1(X) and hence defines a homology
class 〈u′ + v′ + w′〉.

2. Since u ∗ v ∗w is a loop, we know from Proposition 9.2 that (u ∗ v ∗w)′ belongs
to Z1(X) and hence determines a homology class 〈(u ∗ v ∗ w)′〉. Prove that
actually,

〈(u ∗ v ∗ w)′〉 = 〈u′ + v′ + w′〉.

Solution.

1. ∂(u′+v′+w′) = u(1)−u(0)+v(1)−v(0)+w(1)−w(0) = 0, where the last equality
follows from the fact that u(1) = v(0) and v(1) = w(0) and w(1) = u(0).

2. Define two 2-chains σ1 and σ2 such that ∂σ1 = v′ − (u ∗ v)′ + u′ and ∂σ2 =
w′ − ((u ∗ v) ∗ w)′ + (u ∗ v)′. They are given for example by σ1(s0, s1, s2) :=
(u ∗ v)′(s0 + s1

2 ,
s1
2 + s2) and σ2(s0, s1, s2) := ((u ∗ v) ∗ w)′(s0 + s1

2 ,
s1
2 + s2).

Then σ1 + σ2 ∈ C2(X) and their boundary is ∂(σ1 + σ2) = v′ − (u ∗ v)′ + u′ +
w′ − ((u ∗ v) ∗ w)′ + (u ∗ v)′ = v′ + u′ + w′ − ((u ∗ v) ∗ w)′. This proves that
〈v′ + u′ + w′〉 = 〈((u ∗ v) ∗ w)′〉 = 〈(u ∗ v ∗ w)′〉.

Problem E.5 (†). Prove that a sequence A•
f−→ B•

g−→ C• is exact in Comp if and

only if An
fn−→ Bn

gn−→ Cn is exact in Ab for every n ∈ Z.

2



Solution. Saying that An
fn−→ Bn

gn−→ Cn is exact for all n is saying that im fn =
ker gn for all n. A priori, that claim that the two complexes (im g)• and (ker f)•
should agree is a stronger statement (since it also requires the boundary operators to
coincide). But in this case since the boundary operator is simply given by restriction
(as these are both subcomplexes of B•), and hence this latter condition is automatic.

Problem E.6 (†). Suppose {(Cλ• , ∂λ) | λ ∈ Λ} is a family of complexes indexed by a
set Λ. Recall their direct sum is the complex

⊕
λC

λ
• equipped with the boundary

operator
∑

λ ∂
λ. Prove that for all n ≥ 0,

Hn

(⊕
λ

Cλ•

)
=
⊕
λ

Hn(Cλ• ).

Solution. Fix n ∈ Z. For every λ we have ∂λn : Cλn → Cλn−1 and ∂λn(Cλn) ⊆ Cλn−1.
This implies im(∂λn+1) ⊆ ker(∂λn) ⊆ Cλn and thus

Hn(
⊕
λ

Cλ• ) =
ker
∑

λ ∂
λ
n

im
∑

λ ∂
λ
n+1

∼=
⊕
λ

ker ∂λn
im ∂λn+1

∼=
⊕
λ

Hn(Cλ• ).

The isomorphism can be written explicitly as follows. An element of
⊕

λC
λ
n is

a tuple (cλ)λ∈Λ where all but finitely many of the cλ ∈ Cλn are zero. The boundary
operator is given by (

∑
λ ∂

λ)(cλ)λ∈Λ = (∂λcλ)λ∈Λ. We define a map

f : Hn(
⊕
λ

Cλ• )→
⊕
λ

Hn(Cλ• )

by
〈(cλ)λ∈Λ〉 7→

(
〈cλ〉

)
λ∈Λ

.

The element on the right-hand side does indeed belong to
⊕

λHn(Cλ• ), since as at
most finitely many of the cλ are non-zero, also at most finitely many of the 〈cλ〉
are non-zero. The map f is well defined as 〈(cλ)λ∈Λ〉 = 〈(c′λ)λ∈Λ〉 if and only if
0 = 〈(cλ − c′λ)λ∈Λ〉. The latter if true if and only if there exists (bλ)λ∈Λ ∈

⊕
λC

λ
n+1

with the property that (
∑

λ ∂
λ)(bλ)λ∈Λ = (cλ− c′λ)λ∈Λ. Then ∂λbλ = cλ− c′λ for each

λ, and hence also 〈cλ〉 = 〈c′λ〉 for each λ.
Next, for any element

(
〈cλ〉

)
λ∈Λ
∈
⊕

λHn(Cλ• ), there always exists another ele-

ment
(
〈c̃λ〉

)
λ∈Λ

with the property that(
〈cλ〉

)
λ∈Λ

=
(
〈c̃λ〉

)
λ∈Λ

and at most finitely many of the c̃λ are non-zero. Indeed, if 〈cλ〉 = 0, set c̃λ := 0,
and if 〈cλ〉 6= 0, set c̃λ := cλ.

This implies that if
(
〈cλ〉

)
λ∈Λ
∈
⊕

λHn(Cλ• ) then 〈(cλ)λ∈Λ〉 does indeed belong

to Hn(
⊕

λC
λ
• ). Then the same argument as above shows that the map

g :
⊕
λ

Hn(Cλ• )→ Hn(
⊕
λ

Cλ• ).

3



by (
〈cλ〉

)
λ∈Λ
7→ 〈(cλ)λ∈Λ〉

is well defined.
Finally, both f and g are homomorphisms by construction, and it is clear they are

mutually inverse. Thus in particular f is an isomorphism, and the proof is complete.
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Problem Sheet F

This Problem Sheet is based on Lecture 11 and Lecture 12. A (†) means I will use
the problem in lectures; a (?) means I think the problem is challenging.

Problem F.1 (†). Prove the Five Lemma: Suppose we have a commutative dia-
gram of abelian groups, where the two rows are exact:

A B C D E

A′ B′ C ′ D′ E′

f g h k l

Prove that

1. If g and k are injectice and f is surjective, h is injective.

2. If g and k are surjective and l is injective, h is surjective.

3. If f, g, k, l are all isomorphisms then so is h.

Problem F.2 (†). Prove the Barratt-Whitehead Lemma: Suppose we have the
following commutative diagram of abelian groups, where the two rows are exact:

. . . An Bn Cn An−1 . . .

. . . A′n B′n C ′n A′n−1 . . .

in

fn

jn

gn

kn

hn fn−1

i′n j′n k′n

Assume each map hn : Cn → C ′n is an isomorphism. Then there is a long exact
sequence:

· · · → An
(in,fn)−−−−→ Bn ⊕A′n

gn−i′n−−−−→ B′n
knh
−1
n j′n−−−−−→ An−1 → . . . ,

where (in, fn) : An → Bn⊕A′n is given by a 7→ (in(a), fn(a)) and gn− i′n : Bn⊕A′n →
B′n is given by (b, a′) 7→ gn(b)− i′n(a′).

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Problem F.3 (?). Consider the following commutative braid of abelian groups:

. . . En+1 Cn Fn . . .

Dn+1 An Dn An−1

. . . Fn+1 Bn En . . .

in

jn

Assume that three of the “strands” form long exact sequences:

. . . En+1 An Bn En An−1 . . .

. . . Dn+1 Fn+1 Bn Dn Fn . . .

. . . Fn+1 An Cn Fn An−1 . . .

Assume in addition that

im in ⊆ ker jn or ker jn ⊆ im in, ∀n ∈ Z.

Prove that the fourth strand

. . . Dn+1 En+1 Cn Dn En . . .
in jn

is also a long exact sequence.

Problem F.4 (†). Let X ′′ ⊆ X ′ ⊆ X be subspaces. Prove there is a long exact
sequence

. . . Hn(X ′, X ′′)→ Hn(X,X ′′)→ Hn(X,X ′)
δ−→ Hn−1(X ′, X ′′)→ . . .

We call this the long exact sequence of the triple (X,X ′, X ′′). Hint: Use the
previous problem!

Suppose we are given two triples (X,X ′, X ′′) and (Y, Y ′, Y ′′), together with a
continuous map f : X → Y such that f(X ′) ⊆ Y ′ and f(X ′′) ⊆ Y ′′. Prove there is a
commutative diagram with exact rows:

. . . Hn(X ′, X ′′) Hn(X,X ′′) Hn(X,X ′) Hn−1(X ′, X ′′) . . .

. . . Hn(Y ′, Y ′′) Hn(Y, Y ′′) Hn(Y, Y ′) Hn−1(Y ′, Y ′′) . . .

where all the vertical maps are induced by f .

2



Problem F.5 (†). Let ∅ 6= X ′ ⊆ X. Prove there is a long exact sequence

· · · → H̃n(X ′)→ H̃n(X)→ Hn(X,X ′)→ H̃n−1(X ′)→ . . .

which ends with H̃0(X ′)→ H̃0(X)→ H0(X,X ′)→ 0.

Problem F.6 (†). Suppose 0 → A
f−→ B

g−→ C → 0 is a short exact sequence of
abelian groups.

1. Prove that the sequence splits if and only if there exists a map k : B → A such
that kf = idA.

2. Give an example of such a short exact sequence where B ∼= A ⊕ C but such
that the sequence does not split.

3. Prove that if C is free abelian then the sequence always splits.

3



Solutions to Problem Sheet F

This Problem Sheet is based on Lecture 11 and Lecture 12. A (†) means I will use
the problem in lectures; a (?) means I think the problem is challenging.

Problem F.1 (†). Prove the Five Lemma: Suppose we have a commutative dia-
gram of abelian groups, where the two rows are exact:

A B C D E

A′ B′ C ′ D′ E′

α

f

β

g

γ

h

δ

k l

α′ β′ γ′ δ′

Prove that

1. If g and k are injective and f is surjective, h is injective.

2. If g and k are surjective and l is injective, h is surjective.

3. If f, g, k, l are all isomorphisms then so is h.

Solution. 1. Let c ∈ C such that h(c) = 0. Then k ◦ γ(c) = γ′ ◦ h(c) = 0
and thus γ(c) = 0 since k is injective. Then β(b) = c for some b ∈ B and
β′ ◦ g(b) = h ◦ β(b) = h(c) = 0. So g(b) ∈ ker(β′) and α′(a′) = g(b) for some
a′ ∈ A′. Since f is surjective f(a) = a′ for some a ∈ A and α′(f(a)) = g(b) by
commutativity. Then g(b−α(a)) = g(b)− g ◦α(a) = g(b)−α′ ◦ f(a) = 0. Since
g is injective b− α(a) = 0. Hence c = β(b) = β ◦ α(a) = 0 which shows that h
is injective.

2. Let c′ ∈ C ′. Since k is surjective k(d) = γ′(c′) for some d ∈ D. From exactness
of the lower row δ′ ◦ γ′(c′) = 0 and thus also 0 = δ′ ◦ k(d) = l ◦ δ(d). Now
δ(d) = 0 since l is injective and thus γ(c) = d for some c ∈ C by exactness of
the upper row. Then γ′(h(c)− c′) = 0 since γ′ ◦ h(c) = k ◦ γ(c) = k(d) = γ′(c′).
So β′(b′) = c′ − h(c) for some b′ ∈ B′ by exactness of the lower row. Since g is
surjective g(b) = b′ for some b ∈ B and h ◦ β(b) = β′ ◦ g(b) = β′(b′) = c′ − h(c).
Now h(β(b) + c) = h ◦ β(b) + h(c) = β′ ◦ g(b) + h(c) = c′ − h(c) + h(c) = c′,
which proves that h is surjective.

3. Follows directly from part (1) and part (2).

Problem F.2 (†). Prove the Barratt-Whitehead Lemma: Suppose we have the
following commutative diagram of abelian groups, where the two rows are exact:

. . . An Bn Cn An−1 . . .

. . . A′n B′n C ′n A′n−1 . . .

in

fn

jn

gn

kn

hn fn−1

i′n j′n k′n

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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Assume each map hn : Cn → C ′n is an isomorphism. Then there is a long exact
sequence:

· · · → An
(in,fn)−−−−→ Bn ⊕A′n

gn−i′n−−−−→ B′n
knh
−1
n j′n−−−−−→ An−1 → . . . ,

where (in, fn) : An → Bn⊕A′n is given by a 7→ (in(a), fn(a)) and gn− i′n : Bn⊕A′n →
B′n is given by (b, a′) 7→ gn(b)− i′n(a′).

Solution. We need to prove the exactness at every place.

1. im(in, fn) ⊆ ker(gn − i′n): (gn − i′n) ◦ (in, fn)(a) = gn ◦ in(a)− i′n ◦ fn(a) = 0 by
exactness.

2. ker(gn − i′n) ⊆ im(in, fn): Let (b, a′) such that gn(b) − i′n(a′) = 0. Then 0 =
j′n(gn(b)− i′n(a′)) = j′n ◦ gn(b)− j′n ◦ i′n(a′) = j′n ◦ gn(b) since j′n ◦ i′n(a′) = 0 by
exactness of the lower row. Hence 0 = j′n ◦ gn(b) = hn ◦ jn(b) and since hn is
an isomorphism jn(b) = 0. Then in(a) = b for some a ∈ An by exactness and
i′n ◦ fn(a) = gn ◦ in(a) = gn(b) = i′n(a′). So i′n(fn(a)− a′) = 0 and by exactness
k′n+1(c′) = fn(a) − a′ for some c′ ∈ C ′n+1. Now fn(a − kn+1 ◦ h−1

n+1(c′)) =
fn(a) − k′n+1(c′) = a′. Moreover, as in ◦ kn+1 = 0 by exactness we also have
in(a−kn+1 ◦h−1

n+1(c′)) = in(a) = b. Hence (in, fn)(a−kn+1 ◦h−1
n+1(c′)) = (b, a′).

3. im(gn−i′n) ⊆ ker(knh
−1
n j′n): knh

−1
n j′n(gn−i′n(b, a′)) = knh

−1
n j′ngn(b) since j′ni

′
n =

0 by exactness. But knh
−1
n j′ngn(b) = knjn(b) by commutativity and hence by

exactness knjn(b) = 0. Thus knh
−1
n j′n(gn − i′n(b, a′)) = 0.

4. ker(knh
−1
n j′n) ⊆ im(gn − i′n): Suppose knh

−1
n j′n(b′) = 0. Then by exactness

of the upper row jn(b) = h−1
n j′n(b′) for some b ∈ B. Moreover j′ngn(b) =

hnjn(b) = j′n(b′) again by commutativity. Then i′n(a′) = gn(b)− b′ and therefor
b′ = gn(b)− i′n(a′) ∈ im(gn − i′n).

5. im(knh
−1
n j′n) ⊆ ker(in−1, fn−1): For this note

(in−1, fn−1◦knh−1
n j′n(b′) = (in−1knh

−1
n j′n(b′), fn−1knh

−1
n j′n(b′) = (0, k′nj

′
n(b′)) = 0,

where the first equality follows from exactness of the upper row and commuta-
tivity. The second equality follows from exactness of the lower row.

6. ker(in−1, fn−1) ⊆ im(knh
−1
n j′n): Suppose (in−1(a, fn−1(a)) = 0. Then by exact-

ness kn(c) = a for some c ∈ Cn. By commutativity k′nhn(c) = fn−1(a) = 0 and
thus j′n(b′) = hn(c) for some b′ ∈ B′n. Hence knh

−1
n j′n(b′) = kn(c) = a.
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Problem F.3 (?). Consider the following commutative braid of abelian groups:

. . . En+1 Cn Fn . . .

Dn+1 An Dn An−1

. . . Fn+1 Bn En . . .

in

jn

Assume that three of the “strands” form long exact sequences:

. . . En+1 An Bn En An−1 . . .

. . . Dn+1 Fn+1 Bn Dn Fn . . .

. . . Fn+1 An Cn Fn An−1 . . .

Assume in addition that

im in ⊆ ker jn or ker jn ⊆ im in, ∀n ∈ Z.

Prove that the fourth strand

. . . Dn+1 En+1 Cn Dn En . . .
in jn

is also a long exact sequence.

Solution. For simplicity in doing the chase we shall introduce some special notation
for it. Elements of, for example, An will be denoted by an, a

′
n, . . . etc. To indicate

that an element an goes to an an element bn ∈ Bn we simply write an → bn. To
indicate that there exists an element en+1 ∈ En+1, not yet defined, that goes to
an ∈ An we write ∃ en+1 → an. The zero in An is denoted by 0An and similar for the
other groups.

The point where we need the condition that im in ⊆ ker jn or ker jn ⊆ im in is for
the exactness at Cn → Dn → En. The exactness at the other places of the sequence
follow without this assumption. Let us start with the exactness at Cn → Dn → En.

1. Exactness at Cn → Dn → En:

(a) Assume first that im in ⊆ ker jn. Let dn → 0En . Then dn → fn → 0An−1

for some fn ∈ Fn, since 0En and by commutativity. Hence ∃ cn → fn.
Then cn → d′n → fn for some d′n ∈ Dn and by commutativity. Now

3



by assumption and since cn → d′n it must follow that d′n → 0En . Then
dn − d′n → 0Fn and ∃ bn → dn − d′n by exactness. Moreover, bn → 0En by
commutativity and thus ∃ an → bn. Let an → c′n, then c′n → dn − d′n by
commutativity. Finally, we see c′n + cn → dn and hence ker jn ⊆ im in.

(b) Now assume that ker jn ⊆ im in. Let cn → dn. Let dn → fn, then cn →
fn → 0An−1 by exactness. Then we also have dn → en → 0An−1 . By
exactness ∃ bn → en and moreover bn → d′n → en by commutativity. For
exactness it also follows d′n → 0Fn . Now dn → en and d′n → en implies
dn − d′n → 0En . By assumption ∃ c′n → dn − d′n. By commutativity and
since dn+d′n → fn it follows c′n → fn. Then cn−c′n → d′n and cn−c′n → 0Fn
by commutativity. Hence ∃ an → cn − c′n. Let an → b′n → d′n. By
exactness an → b′n → 0En , and thus by commutativity d′n → 0En . Since
dn − d′n → 0En we thus have dn → 0En .

2. Exactness at En+1 → Cn → Dn:

(a) ker ⊆ im: Suppose cn → 0Dn . Then 0Dn → 0Fn and hence also cn → 0Fn ,
which implies ∃ an → cn by exactness. Now an → bn → 0Dn and hence
∃ fn+1 → bn. Let fn+1 → a′n, then a′n → bn by commutativity and it follows
an − a′n → 0Bn . From exactness ∃ en+1 → an − a′n and since a′n → 0Cn ,
which also follows from exactness, we have an− a′n → cn. Then en+1 → cn
by commutativity and thus cn ∈ im(En+1 → Cn).

(b) im ⊆ ker: Let en+1 → cn. Then en+1 → an → 0Bn → 0Dn by commuta-
tivity and exactness. So an → cn and an → 0Dn by commutativity which
proves that an ∈ ker(En+1 → Cn).

3. Exactness at Dn → En → Cn−1:

(a) ker ⊆ im: Suppose en → 0Cn−1 , then en → an → 0Cn−1 and an → 0Bn . It
follows from exactness and commutativity that ∃ fn → an with fn → 0Bn .
Again from exactness ∃ dn → fn. Then dn → e′n → an and e′n − en → 0An .
Thus ∃ bn → e′n − en and bn → d′n → e′n − en. We conclude dn − d′n → en,
which shows that en ∈ im(Dn → En).

(b) im ⊆ ker: Let dn → en then dn → fn → an → 0Cn−1 . By exactness
∃ en → an → 0Cn−1 and hence en → 0Cn−1 .

Problem F.4 (†). Let X ′′ ⊆ X ′ ⊆ X be subspaces. Prove there is a long exact
sequence

. . . Hn(X ′, X ′′)→ Hn(X,X ′′)→ Hn(X,X ′)
δ−→ Hn−1(X ′, X ′′)→ . . .

We call this the long exact sequence of the triple (X,X ′, X ′′). Moreover if we
are given two triples (X,X ′, X ′′) and (Y, Y ′, Y ”), together with a continuous map
f : X → Y such that f(X ′) ⊆ Y ′ and f(X ′′) ⊆ Y ′′, prove

. . . Hn(X ′, X ′′) Hn(X,X ′′) Hn(X,X ′) Hn−1(X ′, X ′′) . . .

. . . Hn(Y ′, Y ′′) Hn(Y, Y ′′) Hn(Y, Y ′) Hn−1(Y ′, Y ′′) . . .

(F.1)
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where all the vertical maps are induced by f .

Solution. There exists a commutative braid

. . . Hn+1(X,X ′) Hn(X ′, X ′′) Hn−1(X ′′) . . .

Hn+1(X,X ′′) Hn(X ′) Hn(X,X ′′) Hn−1(X ′)

. . . Hn(X ′′) Hn(X) Hn(X,X ′) . . .

Three blue strand is the long exact sequence of the pair (X ′, X). The green strand
is the long exact sequence of the pair (X ′′, X ′). The pink strand is the long exact
sequence of the pair (X ′′, X). The diagram commutes because homology is a functor
and because of naturality of the connecting homomorphism. To apply Problem F.3
we check that the composition

Hn(X ′, X ′′)→ Hn(X,X ′′)→ Hn(X,X ′)

is zero. But this is clear since it factors through Hn(X ′, X ′) = 0. Thus by Prob-
lem F.3 the fourth strand is also exact.

To show naturality, i.e. that the diagram (F.1) commutes, it suffices to show
that that the right-most square commutes, since the others obviously do as Hn is a
functor. Reading off from the braid, the connecting homomorphism Hn(X,X ′) →
Hn−1(X ′, X ′′) is the composition of the mapsHn(X,X ′)→ Hn−1(X ′)→ Hn−1(X ′, X ′′),
where the first map is the connecting homomorphism of the pair (X,X ′) and the sec-
ond map is induced from the inclusion (X ′, ∅) ↪→ (X ′, X ′′). We already know that
the connecting homomorphism Hn(X,X ′)→ Hn−1(X ′) is a natural transformation,
i.e. the diagram

Hn(X,X ′) Hn−1(X ′)

Hn(Y, Y ′) Hn−1(Y ′)

commutes, where the vertical maps are induced by f , and hence it follows immedi-
ately that the right-most square also commutes.

Remark: It is also possible to prove this by using the short exact sequence of
chain complexes

0→ C•(X
′)
/
C•(X

′′)→ C•(X)
/
C•(X

′′)→ C•(X)
/
C•(X

′)→ 0

(this is a short exact sequence of chain complexes by Problem G.7). However the
proof using the commutative braid is “better”, since this does not use any properties
of singular homology other than the long exact sequence (which is one of the axioms
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of a homology theory, as we will see at the end of the course.) Meanwhile this second
proof uses the fact that singular homology is the homology of a chain complex (which
is not true for an arbitrary homology theory.)

Problem F.5 (†). Let ∅ 6= X ′ ⊆ X. Prove there is a long exact sequence

· · · → H̃n(X ′)→ H̃n(X)→ Hn(X,X ′)→ H̃n−1(X ′)→ . . .

which ends with H̃0(X ′)→ H̃0(X)→ H0(X,X ′)→ 0.

Solution. Let X ′′ := {p}, where p is a point in X ′. Then the claim follows imme-
diately from Problem F.4 and Corollary 12.22.

Problem F.6 (†). Suppose 0 → A
f−→ B

g−→ C → 0 is a short exact sequence of
abelian groups.

1. Prove that the sequence splits if and only if there exists a map k : B → A such
that kf = idA.

2. Give an example of such a short exact sequence where B ∼= A ⊕ C but such
that the sequence does not split.

3. Prove that if C is free abelian then the sequence always splits.

Solution. Recall that by definition the sequence splits if and only if there exists a
map h : C → B such that gh = idC .

1. (a) ⇒: Define k : B → A by k(b) : f−1(b − hg(b)). This is well-defined
since b − hg(b) ∈ ker(g) = im(f). Indeed g(b − hg(b)) = g(b) − ghg(b) =
g(b)−g(b) = 0, since gh = idC . Moreover, kf(a) = f−1(f(a)−hgf(a)) = a,
since gf = 0.

(b) ⇐: For a c ∈ C, let b be any preimage of g. Define h : C → B by h(c) =
b−fk(b). This map is independent of the choice of the preimage b. Indeed,
let b′ be another preimage. Then b−b′ ∈ ker(g) = im(f) and hence it exists
a ∈ A such that f(a) = b− b′. Then fk(b− b′) = fkf(a) = f(a) = b− b′,
since kf = idA. Therefor b− fk(b)− (b′− fk(b′)) = b− b′− fk(b− b′) = 0.
We verify: gh(c) = g(b− fk(b)) = c, since b is a preimage of c under g and
gf = 0.

2. Let A := 〈a|a2 = 1〉 bet he cyclic group of order 2 and B := 〈b|b4 = 1〉. Consider

the short exact sequence 0→ A
f−→ B

g−→ A→ 0, where f(a) := 2b and g(b) = a.
This sequence does not split, since B is not isomorphic to the direct product
A⊕ A. Let M :=

⊕∞
i=1A⊕ B. Clearly A⊕M ∼= M ∼= B ⊕M and we have a

exact sequence 0 → A
f̃−→ B ⊕M g̃−→ A ⊕M → 0, where f̃(a) := (f(a), 0) and

g̃(b,m) := (g(b),m). This sequence is exact and B ⊕M ∼= A⊕ (A⊕M), but it
is not split.

3. Choose a basis C of the free abelian group C. For every c ∈ C choose a preimage
b ∈ B of the surjective map g and define h(c) = b. Extend this by linearity
(Lemma 7.2). Clearly gh = idC . Notice however that the map h is not unique.
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Problem Sheet G

This Problem Sheet is based on Lecture 13 and Lecture 14. A (†) means I will use
the problem in lectures; a (?) means I think the problem is challenging.

Problem G.1. Give an explicit formula for Sdn(σ) for σ : ∆n → X in the case
n = 0, 1, 2.

Problem G.2 (†). Prove that if D is a convex bounded subset of some Euclidean
space then Definition 13.7 agrees with Definition 13.6:

Sdn(σ) = Sdcv
n (σ), ∀σ : ∆n → D affine.

Problem G.3 (†). Show that the two forms of the excision axiom (Theorems 14.7
and Theorem 14.8) are equivalent.

Problem G.4. Let C• be a subcomplex of C ′•. Define a map pn : C ′n → C ′n/Cn by
c 7→ c + Cn (the coset). Show that the pn’s form a chain map p : C ′• → C ′•/C• with
(ker p)• = C•.

Problem G.5. Prove that the first isomorphism theorem holds in Comp. If
f : C• → C ′• is a chain map, prove there is an isomorphism of chain complexes:

q : C•/(ker f)• → (im f)•

such that the following diagram commutes:

C• (im f)• C ′•

C•/(ker f)•

f

p
q

Here p is the map from Problem G.4.

Problem G.6 (†). Prove that the second isomorphism theorem holds in Comp:
if A• and B• are subcomplexes of a chain complex C• then as chain complexes, one
has

A•
A• ∩B•

∼=
A• +B•
B•

Problem G.7 (†). Prove that the third isomorphism theorem holds in Comp:
if A• ⊆ B• ⊆ C• are subcomplexes, prove there is a short exact sequence of chain
complexes

0→ B•/A•
i−→ C•/A•

p−→ C•/B• → 0

where in : bn 7→ bn +An is the inclusion and pn is the map cn +An 7→ cn +Bn.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Solutions to Problem Sheet G

This Problem Sheet is based on Lecture 13 and Lecture 14. A (†) means I will use
the problem in lectures; a (?) means I think the problem is challenging.

Problem G.1. Give an explicit formula for Sdn(σ) for σ : ∆n → X in the case
n = 0, 1, 2.

Solution. Let us first give an explicit formula for the affine barycentric subdivision.
Let D be a convex set and let v0, . . . , vn be elements of D. Let σ : ∆n → D denote

the affine singular n-simplex defined by σ(ei) = vi. By a slight abuse of notation we
write σ = [v0, v1 . . . , vn]. Note however that the vi may not be affinely independent
and hence [v0, v1, . . . , vn] may not be a genuine n-simplex.

1. Suppose n = 0. Then by definition Sdcv
0 (σ) = σ.

2. Suppose n = 1. Let v01 := 1
2(v0 + v1). Then

Sdcv
1 ([v0, v1]) = [v01, v1]− [v01, v0].

3. Suppose n = 2. For i < j, let vij := 1
2(vi + vj) and let v012 = 1

3(v0 + v1 + v2).
Then:

Sdcv
2 ([v0, v1, v2] = [v012, v12, v2]− [v012, v12, v1]− [v012, v02, v2]

+ [v012, v02, v0] + [v012, v01, v1]− [v012, v01, v0]

4. General case: Given a permutation g of {0, 1, . . . , n}, let vgi denote the barycen-
tre of the (n− i)-simplex [vg(i), . . . , vg(n)]:

vgi := b
(
[vg(i), . . . , vg(n)]

)
(where by definition the barycentre of a 0-simplex [vi] is just vi again.) Then
by induction one can show that

Sdcv
n (σ) =

∑
g∈S(n+1)

sgn(g)[vg0 , v
g
1 , . . . , v

g
n],

where S(n + 1) denotes the group of all permutations of {0, 1, . . . , n} and
sgn(g) ∈ {±1} denotes the signature of the permutation.

Finally for arbitrary singular simplices σ we just apply the above with vi = ei and
compose with σ:

Sd1(σ) =σ ◦ [e01, e1]− σ ◦ [e01, e0], σ : ∆1 → X,

Sd2(σ) =σ ◦ [e012, e12, e2]− σ ◦ ◦[e012, e12, e1]− σ ◦ [e012, e02, e2]

+ σ ◦ [e012, e02, e0] + σ ◦ [e012, e01, e1]− σ ◦ [e012, e01, e0], σ : ∆2 → X,

Sdn(σ) =
∑

g∈S(n+1)

sgn(g)σ ◦ [eg0, e
g
1, . . . , e

g
n], σ : ∆n → X.

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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Problem G.2 (†). Prove that if D is a convex bounded subset of some Euclidean
space then Definition 13.7 agrees with Definition 13.6:

Sdn(σ) = Sdcv
n (σ), ∀σ : ∆n → D.

Solution. For an affine n-simplex σ let F1 denote the set of faces of σ. Inductively
we define Fi to be the set of faces of elements in Fi−1. Notice that Fn+1 = ∅ as
σ is a n-simplex. Let Bi denote the set of barycentres of elements in Fi and set
B :=

⋃
Bi. Let Sdcv

n (σ) =
∑
miτi for τi ∈ Cn(X) and mi ∈ Z. Clearly the faces

of affine simplices are affine. From the recursive formula in Definition 13.6 it follows
that the τi are in 1-1 correspondence with n-simplexes spanned by n points in B and
one vertex of σ. Now the claim follows from the fact that the barycentre of an affine
n-simplex σ is equal to σ(bn), where bn is the barycentre of the standard simplex. In
other words, chopping up an affine simplex σ into smaller simplices is the same as
first chopping up the standard simplex and then applying σ.

Here is an alternative argument. Using the notation from the previous question,
if σ = [v0, v1 . . . , vn] is an affine singular n-simplex then since

σ

(
n∑
i=0

si ei

)
=

n∑
i=0

si vi, ∀
n∑
i=0

si = 1,

we see that

σ ◦ [eg0, e
g
1, . . . , e

g
n] = [vg0 , v

g
1 , . . . , v

g
n], ∀ g ∈ S(n+ 1),

and hence Sdcv
n (σ) = Sdn(σ).

Problem G.3 (†). Show that the two forms of the excision axiom (Theorems 14.7
and Theorem 14.8) are equivalent.

Solution. Assume that Theorems 14.7 holds. With X = X, X1 = X ′ and X2 =
X \X ′′ Theorem 14.8 follows, as X1 ∩X2 = X ′ ∩ (X \X ′′) = X ′ \X ′′. Conversely,
if Theorem 14.8 holds, set X = X, X ′ = X1 and X ′′ = X \ X2. Then X \ X ′′ =
X \ (X \X2) = X ∩X2 = X2 and X ′ \X ′′ = X1 \ (X \X2) = X1 ∩X2 and Theorem
14.7 follows.

Problem G.4. Let C• be a subcomplex of C ′•. Define a map pn : C ′n → C ′n/Cn by
c 7→ c + Cn (the coset). Show that the pn’s form a chain map p : C ′• → C ′•/C• with
(ker p)• = C•.

Solution. The boundary operator of the complex C ′•/C• is given by ∂′(c + Cn) =
∂′(c) +Cn−1. Let ∂ denote the boundary operator of C•, which is just the restriction
of the boundary operator ∂′ of C ′•. We need to check that pn commutes with the
boundary operators. Indeed, pn−1 ◦ ∂′(c) = ∂′(c) + Cn−1 = ∂′(c+ Cn) = ∂′ ◦ pn.

Problem G.5. Prove that the first isomorphism theorem holds in Comp. If
f : C• → C ′• is a chain map, prove there is an isomorphism of chain complexes:

q : C•/(ker f)• → (im f)•
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such that the following diagram commutes:

C• (im f)• C ′•

C•/(ker f)•

f

p
q

Here p is the map from Problem G.4.

Solution. By the first Isomorphism Theorem for groups we have an isomorphsim

q : Cn
/

ker fn → im fn

c+ ker fn 7→ f(c)

for every n. It is left to show that q commutes with the boundary operators. As f is a
chain map we have f(∂(c)) = ∂′(f(c)) and thus q◦∂(c+ker fn) = q(∂(c)+ker fn−1) =
f(∂(c)) = ∂′(f(c)) = ∂′◦q(c+ker fn). Commutativity of the diagram follows directly
from the definition of q.

Problem G.6 (†). Prove that the second isomorphism theorem holds in Comp:
if A• and B• are subcomplexes of a chain complex C• then as chain complexes, one
has

A•
A• ∩B•

∼=
A• +B•
B•

Solution. Define

g : An +Bn → An/An ∩Bn
a+ b→ a+An ∩Bn.

This map is well-defined as a + b = a′ + b if and only if a − a′ = b′ − b ∈ An ∩ Bn.
Moreover, g is surjective and ker g = Bn as g(a + b) = a + An ∩ Bn = 0 + An ∩ Bn
if and only if a ∈ An ∩ Bn. It follows a + b ∈ ker g if and only if a + b ∈ Bn. The
map g is a chain map, since ∂ ◦ g(a+ b) = ∂(a+An ∩Bn) = ∂(a) +An−1 ∩Bn−1 =
g(∂(a) + ∂(b)) = g(∂(a+ b)), where we used the fact that for subcomplexes D• ⊆ C•
we have ∂D•(D•) ⊆ D•−1

Problem G.7 (†). Prove that the third isomorphism theorem holds in Comp:
if A• ⊆ B• ⊆ C• are subcomplexes, prove there is a short exact sequence of chain
complexes

0→ B•/A•
i−→ C•/A•

p−→ C•/B• → 0

where in : bn 7→ bn +An is the inclusion and pn is the map cn +An 7→ cn +Bn.

Solution. For every n, pn◦in = pn(bn+An) = Bn, hence im in ker pn. Conversely, if
cn+An ∈ ker pn then cn ∈ Bn and in(cn+An) = cn+An. The maps are chain maps,
because all boundary operators are given by restriction of the boundary operator of
C•.
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Problem Sheet H

This Problem Sheet is based on Lecture 15 and Lecture 16. A (†) means I will use
the problem in lectures; a (?) means I think the problem is challenging.

Problem H.1 (†). Let X be path connected and let ζ : π1(X, p) → [S1, X] be the
function that sends a path class [u] to the free homotopy class of the map û : S1 → X
given by

û(e2πis) := u(s), s ∈ I.
Prove this function is surjective. Moreover if ζ([u]) = ζ([v]), prove there exists
[w] ∈ π1(X, p) such that [u] = [w] ∗ [v] ∗ [w]−1. Thus if π1(X, p) is abelian then ζ is
an isomorphism, and hence π1(X, p) ∼= [S1, X].

Problem H.2 (†). Prove the Hexagon Lemma: Suppose we have a commuting
hexagon of abelian groups and group homomorphisms:

A

B1 B2

C

D2 D1

E

f1 f2

h

j1 j2

m

k1

i2

g1

k2

i1

g2

Assume that k1 and k2 are isomorphisms.

1. If im i1 ⊆ ker j1 and im i2 = ker j2, prove that the maps

D2 ⊕D1 → C, (x, y) 7→ i2(x) + i1(y),
C 7→ B1 ⊕B2, z 7→ (j1(z), j2(z)).

are both isomorphisms, and that in fact im i1 = ker j1.

2. Assume that im i1 = ker j1 and im i2 = ker j2 and that imh ⊆ kerm. Prove
that g1k

−1
1 f1 = −g2k

−1
2 f2.

Problem H.3. Prove the Borsuk-Ulam Theorem: Let f : Sn → Rn is continu-
ous, there exists a point x ∈ Sn such that f(x) = f(−x). Deduce that Sn is not
homeomorphic to any subspace1 of Rn.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
1This result has several interesting physical connotations. Taking n = 2, this implies that a map of the

earth cannot be drawn (homeomorphically) onto a page of an atlas. Alternatively, consider the function
f : the earth → R2 given by f(a place) = (temperature at that place,pressure at that place). Then there
exists a pair of points on opposite sides of the world with the same temperature and pressure.
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Problem H.4. Prove the Lusternik-Schnirelmann Theorem: Let n ≥ 1 and
assume we can write Sn = A1 ∪ A2 ∪ · · · ∪ An+1 where each Ai is either open or
closed. Then at least one of the Ai contains a pair of antipodal points.

Problem H.5. Let J be a category with two objects and two non-identity morphisms:

♠ ♥

Let T : J → Sets be a functor. Prove that the colimit of T exists. This is type of
colimit is called a coequaliser. Do the same with T : J→ Ab and T : J→ Top.

Problem H.6 (?). Prove that the coequaliser exists in the category of compact
Hausdorff spaces.
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Solutions to Problem Sheet H

This Problem Sheet is based on Lecture 15 and Lecture 16. A (†) means I will use
the problem in lectures; a (?) means I think the problem is challenging.

Problem H.1 (†). Let X be path connected and let ζ : π1(X, p) → [S1, X] be the
function that sends a path class [u] to the free homotopy class of the map û : S1 → X
given by

û(e2πis) := u(s), s ∈ I.

Prove this function is surjective. Moreover if ζ([u]) = ζ([v]), prove there exists
[w] ∈ π1(X, p) such that [u] = [w] ∗ [v] ∗ [w]−1. Thus if π1(X, p) is abelian then ζ is
an isomorphism, and hence π1(X, p) ∼= [S1, X].

Solution. We consistently use the hat notation to go back and forth between loops
u : (I, ∂I)→ (X, p) and maps û : S1 → X.

First note that every map û : S1 → X is homotopic to a map v̂ : S1 → X such
that v̂(1) = p. Indeed, if w is a path from u(1) to p then the homotopy

U(s, t) =


w(t− 3s), 0 ≤ s ≤ t

3 ,

u
(
e2πi( 3s−t

3−2t
)), t

3 ≤ s ≤
3−t

3 ,

w(3s+ t− 3), 3−t
3 ≤ s ≤ 1,

is such that U(s, 0) = u(e2πis) and U(s, 1) is the product loop w̄ ∗ u ∗ w. Thus the
homotopy V : S1 × I → X given by V (e2πis, t) = U(s, t) starts at û and ends at a
map v̂ such that v̂(1) = w(1) = p. This shows that ζ is surjective.

Let us now assume that ζ([u]) = ζ([v]); then we have a homotopy V : S1×I → X
such that V (e2πis, 0) = u(s) and V (e2πis, 1) = v(s). Thus the path w : I → X given
by w(t) = V (1, t) is a loop representing an element [w] ∈ π1(X, p). The homotopy

W (s, t) =

{
U(2(1− t)s, 2st), 0 ≤ s ≤ 1

2 ,

U(1 + 2t(s− 1), t+ (1− t)(2s− 1)), 1
2 ≤ s ≤ 1,

,

where U(s, t) := V (e2πis, t), shows that u ∗ w ' w ∗ v.
Conversely, if u∗w = w ∗ v, then there exists a homotopy U : u ' w ∗ v ∗ w̄ rel ∂I.

So V (e2πis, t) := U(s, t) is a well-defined homotopy from û to ̂w ∗ v ∗ w̄. Moreover
the homotopy

Z(s, t) =


w(3s+ t) 0 ≤ s ≤ 1−t

3

v(3s+t−1
1+2t ) 1−t

3 ≤
2+t

3

w(3− 3s+ t) 2+t
3 ≤ s ≤ 1

is such that Z : w ∗ v ∗ w̄ ' v and Z(0, t) = w(t) = Z(1, t); therefore, it defines a
homotopy Y : S1 × I → X via Y (e2πis, t) := Z(s, t) which starts at ̂w ∗ v ∗ w̄ and

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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ends at v̂. Now compose the homotopies U and Y to obtain one from û to v̂. Thus
ζ([u]) = ζ([v]). This completes the proof.

Problem H.2 (†). Prove the hexagon lemma: Suppose we have a commuting
hexagon of abelian groups and group homomorphisms:

A

B1 B2

C

D2 D1

E

f1 f2

h

j1 j2

m

k1

i2

g1

k2

i1

g2

Assume that k1 and k2 are isomorphisms.

1. If im i1 ⊆ ker j1 and im i2 = ker j2, prove that the maps

D2 ⊕D1 → C, (x, y) 7→ i2(x) + i1(y),
C 7→ B1 ⊕B2, z 7→ (j1(z), j2(z)).

are both isomorphisms, and that in fact im i1 = ker j1.

2. Assume that im i1 = ker j1 and im i2 = ker j2 and that imh ⊆ kerm. Prove
that g1k

−1
1 f1 = −g2k

−1
2 f2.

Solution.

1. As j1i2 = k1 is an isomorphism, ker(j1) ∩ im(i2) = {0}. Since im(i2) = ker(j2)
is follows that

ker(j2) ∩ ker(j1) = {0}. (H.1)

For a c ∈ C let c = i1k
−1
2 j2(c) + i2k

−1
1 j1(c) then j1(c) = j1i2k

−1
1 j1(c) = j1(c)

and similarly j2(c) = j2(c). Hence c = c by H.1. Therefore every c ∈ C has a
representation of the form c = i1(d1) + i2(d2), where d1 ∈ D1 and d2 ∈ D2. It
is left to show the uniqueness of this representation. For any representation of
the form c = i1(d1) + i2(d2) we have j2(c) = j2i1(d1) + j2i2(d2) = k2(d1) and
hence d1 = k−1

2 j2(c). Similarly d2 = k−1
1 j1(c) and the representation is unique.

To prove the second part take b1 ∈ B1 and b2 ∈ B2 and set c = i2k
−1
1 (b1) +

i1k
−1
2 (b2). Then j1(c) = j1i2k

−1
1 (b1) = k1k

−1
1 (b1) = b1 and j2(c) = b2. Hence for

every (b1, b2) there exists a c ∈ c such that (j1(c), j2(c)) = (b1, b2). Uniqueness
follows from H.1.

Last but not least, if c ∈ ker(j1) then i1k
−1
2 j2(c) ∈ ker j1 as j1i1 = 0. Moreover

j2i1k
−1
2 j2(c) = k2k

−1
2 j2(c) = j2(c). Hence i1k

−1
2 j2(c) − c ∈ ker(j1) ∩ ker(j2) =

{0} by H.1 and c =∈ im(i1).
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2. Let a ∈ A. By part 1 and commutativity of the diagram

h(a) = i2k
−1
1 j1h(a) + i1k

−1
2 j2h(a)

= i2k
−1
1 f1(a) + i1k

−1
2 f2(a).

Applying m to both sides gives

0 = mh(a)

= mi2k
−1
1 f1(a) +mi1k

−1
2 f2(a)

= g1k
−1
1 f1(a) + g2k

−1
2 f2(a),

where the last equality uses commutativity.

Problem H.3. Prove the Borsuk-Ulam Theorem: If f : Sn → Rn is continu-
ous, there exists a point x ∈ Sn such that f(x) = f(−x). Deduce that Sn is not
homeomorphic to any subspace1 of Rn.

Solution. Assume that f(−x) 6= f(x)∀x. Then the map

g : Sn → Sn−1

x 7→ f(x)− f(−x)

‖f(x)− f(−x)‖

is well-defined. Moreover, we can see that g is odd. Then g|Sn−1 : Sn−1 → Sn−1 is
also odd and hence has odd degree by Theorem 15.12. But g|Sn−1 extends to the
upper hemisphere of Sn and thus it has degree zero by Proposition 2.15. But zero is
an even degree, which is a contradiction.

Problem H.4. Prove the Lusternik-Schnirelmann Theorem: Assume we can
write Sn = A1∪A2∪· · ·∪An+1 where each Ai is either open or closed. Then at least
one of the Ai contains a pair of antipodal points.

Solution.

1. First we consider the case that all Ai are closed. Define the map

f : Sn → Rn

x→ (dist(x,A1), . . . ,dist(x,An)).

By the Borsuk-Ulam Theorem there exists a point x ∈ Sn with f(x) = f(−x). If
the i-th coordinate of x is zero, then both x and −x are in Ai. If all coordinates
are non-zero, then x and −x lie in An+1.

1This result has several interesting physical connotations. Taking n = 2, this implies that a map of the
earth cannot be drawn (homeomorphically) onto a page of an atlas. Alternatively, consider the function
f : the earth → R2 given by f(a place) = (temperature at that place,pressure at that place). Then there
exists a pair of points on opposite sides of the world with the same temperature and pressure.
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2. If all Ai are open, then we find slighly smaller closed sets Bi ⊂ Ai such that
Sn = A1 ∪A2 ∪ · · · ∪An+1 and we apply the first case.

3. Suppose now that A1, . . . , Am are closed and Am+1, . . . , An+1 are open. Assume
that none of the set Ai for i = m+ 1, . . . , n+ 1 contains antipodal points. For
i = 1, . . . ,m define the open sets Ci,1/k := {x ∈ Sn | dist(x,Ai) < 1/k}, where
k ∈ N. By the first case, there exists for every k an i ∈ {1, . . . ,m} such that
Ci,1/k contains antipodal points. As A1, . . . , Am are all closed, we see that, by
taking the limit for k → 0, there exists an i ∈ {1, . . . ,m} such that Ai contains
antipodal points.

Problem H.5. Let J be a category with two objects and two non-identity morphisms:

♠ ♥

Let T : J → Sets be a functor. Prove that the colimit of T exists. This is type of
colimit is called a coequaliser. Do the same with T : J→ Ab and T : J→ Top.

Solution. Before proving the problem, let us insert a definition:

Definition. Let X be a set and suppose R is an arbitrary binary relation on X
(i.e. R is simply a subset of X ×X, and we think of two elements x, y in X being
related if (x, y) ∈ R.) The equivalence relation ∼ generated by R is by definition
the smallest equivalence relation on X that preserves all the relations specified by
R. Explicitly, one defines ∼ by saying that x ∼ y if there exists a sequence x =
x0, x1, , . . . , xn = y such that for each i = 1, . . . , n, either:

(i) xi = xi−1 or

(ii) (xi−1, xi) ∈ R or

(iii) (xi, xi−1) ∈ R.

We now prove the problem.

1. Let the two morphisms in J be i and j, and let A = T (♠), B = T (♥). Write
f = T (i) and g = T (j), so the picture is this:

♠ ♥

i

j

apply the functor T
A B

f

g

Let ∼ be the equivalence relation on B generated by the relation R on B given
by R = {(f(a), g(a)) | a ∈ A}. Let q : B → C denote the map that sends
b → [b], where [b] denotes the equivalence class. Then q ◦ f = q ◦ g and C
is a solution with c♥ = q and c♠ = q ◦ f = q ◦ g. To check that C is the
colimit, assume we have another space C ′ and another map q′ : B → C ′ such
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that q′ ◦ f = q′ ◦ g. We need to find a unique map u : C → C ′ such that the
following commutes:

A B C

C ′

f

g

q

q′
u

Define u([b]) := q′(b), where b is any element in the equivalence class [b]. In order
for this to be well-defined, we need to know that if b1 ∼ b2 then q′(b1) = q′(b2).
But this is clear from the definition of ∼ from R. The map u satisfies u ◦ q = q′

and is unqiue by construction.

2. The proof for Ab is similar. With the notation as above, first consider the
special case where g is the zero homomorphism. Then the coequaliser of f and
0 is simply the quotient of B by the subgroup f(A). In the general case, the
coequaliser of f and g is the coequaliser of f − g and the zero homomorphism.

3. Finally to obtain the coequaliser in Top we simply take the coqualiser con-
structed in Sets and endow it with the quotient topology determined by q.

Problem H.6 (?). Prove that the coequaliser exists in the category of compact
Hausdorff spaces.

Solution. In the category of Hausdorff spaces the coequaliser of two continuous
mappings f, g : X → Y is the quotient Z of Y by the closure R ⊂ Y × Y of the
equivalence relation R generated by the pairs (f(x), g(x)) for x ∈ X2. Elementary
point-set topology tells us that the quotient of a compact Hausdorff space Y by a
closed relation is another Hausdorff space. Moreover since Y is compact the quotient
Z is also compact (being the continuous image of a compact set). Thus Z does indeed
belong to the desired category (this is the most important thing to check!)

Now take another compact Hausdorff space W and suppose we are given a con-
tinuous map h : Y →W such that h ◦ f = h ◦ g. The diagonal ∆ ⊂W ×W is closed
(again recall from the fact from point-set topology that a space is Hausdorff if and
only if the diagonal is closed). Thus (h × h)−1(∆) is a closed equivalence relation
on Y containing all the pairs (f(x), g(x)) for x ∈ X. Thus in particular it contains
R and so h factors through the quotient, giving us the desired (necessarily unique)
continuous map u : Z →W . Hence Z is indeed the colimit.

2Here R is the smallest closed equivalence relation containing R. This may not be equal to the actual
topological closure of R, as the latter may not be transitive.
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Problem Sheet I

This Problem Sheet is based on Lecture 17 and Lecture 18. A (†) means I will use
the problem in lectures; a (?) means I think the problem is challenging.

Problem I.1 (†). Prove the Invariance of Domain Theorem: Suppose U and U ′

are two subsets of Sn and f : U → U ′ is a homeomorphism. If U is open then so is
U ′. Hint: Use the Jordan-Brouwer Separation Theorem.

Problem I.2. Prove that if Rn contains a subspace homeomorphic to Rm then m ≤
n.

Problem I.3 (†). Recall the definition of a weakly Hausdorff space from Definition
17.1.

1. Prove that any weakly Hausdorff space is a T1 space. Give an example of a T1

space which is not weakly Hausdorff.

2. Prove that any Hausdorff space is weakly Hausdorff. Give an example of a
weakly Hausdorff space which is not Hausdorff.

3. Let X be a weakly Hausdorff space and let K be a compact Hausdorff space.
Assume f : K → X is continuous. Prove that f(K) is a compact Hausdorff
subspace of X with respect to the subspace topology.

Problem I.4 (†). Let X and Y be topological spaces, and let X ′ ⊆ X be a closed
subspace. Let f : X ′ → Y be continuous, and let X∪f Y denote the adjunction space.
The canonical inclusions X ↪→ X t Y and Y ↪→ X t Y induce maps g : X → X ∪f Y
and j : Y → X ∪f Y . Prove that the diagram

X ′ Y

X X ∪f Y

f

ı j

g

is a pushout in Top. Then prove:

1. The map j is a closed embedding,

2. The restriction of g to X \X ′ is an open embedding.

3. If X and Y are T1 spaces then so is X ∪f Y .

4. The quotient map X t Y → X ∪f Y is closed if and only if f is closed.

5. If X and Y are Hausdorff and X ′ ⊆ X is compact then X ∪f Y is Hausdorff.

6. If X is compact and X ∪f Y is Hausdorff then X 7→ g(X) is a quotient map.

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.

1

https://www.merry.io


Problem I.5 (†). Compute the homology of CPn. Why doesn’t this work for RPn?1

Problem I.6 (†). Prove that for any m,n ≥ 0, the space Sm × Sn can be obtained
from Sm∨Sn by attaching a (m+n)-cell. Use this to compute the homology H•(S

n×
Sm) for all n,m ≥ 0.

1We will eventually be able to compute the homology of RPn, but not until Lecture 21.
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Solutions to Problem Sheet I

This Problem Sheet is based on Lecture 17 and Lecture 18. A (†) means I will use
the problem in lectures; a (?) means I think the problem is challenging.

Problem I.1 (†). Prove the Invariance of Domain Theorem: Suppose U and U ′

are two subsets of Sn and f : U → U ′ is a homeomorphism. If U is open then so is
U ′. Hint: Use the Jordan-Brouwer Separation Theorem.

Solution. Let p ∈ f(U) = U ′. Then there exists an x ∈ U such that f(x) = p. Let
Bε(x) ⊂ U be an open ball such that Bε(x) ⊂ U . Consider S := f(∂Bε(x)) ⊂ Sn

an embedded n − 1-sphere. By Theorem 17.11 Sn \ S has two components, say X
and Y , and S is the boundary of both X and Y . As f(Bε(x)) ∩ S = ∅ and f(Bε(x))
is connected we have w.l.o.g. that f(Bε(x)) ⊂ X. Then f(Bε(x)) ⊂ X = Y c,
which is equivalent to saying that Y ⊂ Sn \ f(Bε(x)). But Y is a path component of
Sn\S = S\f(∂Bε(x)) hence Y = Sn\f(Bε(x)) and Sn\X ⊂ Sn\f(Bε(x)) = Y . This
implies that X = f(Bε(x)) and X = f(Bε(x)). Therefore p ∈ f(Bε(x)) = X ⊂ U ′,
where X is an open neighborhood of p in U ′.

Problem I.2. Prove that if Rn contains a subspace homeomorphic to Rm then m ≤
n.

Solution. Suppose there exists a homeomorphism f : Rm → U , where U is open in
Rn and m > n. The inclusion

i : Rn → Rm

(x1, . . . , xn)→ (x1, . . . , xn, 0, . . . , 0)

is continuous and injective. Then the composition f ◦ i : Rn → Rn is also continuous
and injective. But im(f ◦ i) is not open in Rn since the image of i is contained in the
hyperplane Rn×0 ⊂ Rm. The one point compactification of Rn is the sphere Sn and
U := Rn is an open subset of Sn. Then f ◦ i : U → f ◦ i(U) is a homeomorphism.
But U is open in Sn and im(f ◦ i) ∈ Sn is non-open. This contradicts the Invariance
of Domain Theorem.

Problem I.3 (†). Recall the definition of a weakly Hausdorff space from Definition
17.1.

1. Prove that any weakly Hausdorff space is a T1 space. Give an example of a T1

space which is not weakly Hausdorff.

2. Prove that any Hausdorff space is weakly Hausdorff. Give an example of a
weakly Hausdorff space which is not Hausdorff.

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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3. Prove that if X be a weakly Hausdorff space and f : K → X is a continuous
map from a compact Hausdorff space then f(K) is a compact Hausdorff subset
of X.

Solution.

1. For every p ∈ X take the continuous map

f : {∗} → X

∗ 7→ p.

As {∗} is a compact Hausdorff space, f({∗}) = {p} is closed.

We take the real line with two copies of the origin. This is the quotient of two
copies of the real line, where corresponding non-zero points on the two lines are
identified. This space is certainly T1 with respect to the quotient topology. It
is however not weakly Hausdorff. To see this consider the interval [−1, 1] with
only one origin. This is the image of an embedding of a compact Hausdorff
space but it is not closed, as the second origin is not contained.

2. Let p ∈ f(K)c and define for every q ∈ f(K) two disjoint open neighbourhoods
q ∈ Vq and p ∈ Uq. The set Vq for all q ∈ K form an open cover of f(K). As K
is compact and f is continuous also f(K) is compact. Hence we find q1, . . . , qn
such that f(K) ⊂ Vq1 ∪ . . .∪ Vqn . Now U := Uq1 ∩ . . .∩Uqn ⊂ f(K)c is an open
neighbourhood of p and disjoint form f(K). Since p ∈ f(K)c was arbitrary,
f(K)c is open and hence f(K) is closed.

We define the co-countable topology on an uncountable set S by defining the
open sets to be the sets who’s complement is countable. Let S1 and S2 be
two non-empty open sets. Then the complement of S1 is countable and S2

is uncountable. Hence S1 and S2 must intersect, which shows that S is not
Hausdorff. Let f : K → X be a continuous map from a compact Hausdorff
space. As K is compact also f(K) is compact. A compact subset A of S
must be countable. Indeed, for every p ∈ S take the open set defined by the
complement of p. This defines an open cover of A, which has a finite subcover
if and only if A is finite. We conclude that f(K) must be finite and thus also
closed, which shows that S is weakly Hausdorff.

3. It is clear that L := f(K) is compact with respect to the subspace topology.
We need to show that L is Hausdorff. Note that f is a closed map: if F ⊆ K
is closed then F is a compact Hausdorff space and hence f(F ) is closed. Now
let x 6= y ∈ L. Then f−1(x) and f−1(y) are are disjoint closed subspaces of the
compact Hausdorff space K, and hence admit disjoint open neighbourhoods U
and V respectively. Set

U ′ := {z ∈ X | f−1(z) ⊆ U} = L \ f(K \ U),

and
V ′ := {z ∈ X | f−1(z) ⊆ V } = L \ f(K \ V ).
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Then x ∈ U ′ and y ∈ V ′. Moreover U ′ ∩ V ′ = ∅. Since K \ U is compact,
f(K \ U) is closed in L, and hence U ′ is open in L. Similarly V ′ is open in L.
Thus L is Hausdorff. This completes the proof.

Problem I.4 (†). Let X and Y be topological spaces, and let X ′ ⊆ X be a closed
subspace. Let f : X ′ → Y be continuous, and let X∪f Y denote the adjunction space.
The canonical inclusions X ↪→ X t Y and Y ↪→ X t Y induce maps g : X → X ∪f Y
and j : Y → X ∪f Y . Prove that the diagram

X ′ Y

X X ∪f Y

f

ı j

g

is a pushout in Top. Then prove:

1. The map j is a closed embedding,

2. The restriction of g to X \X ′ is an open embedding.

3. If X and Y are T1 spaces then so is X ∪f Y .

4. The quotient map X t Y → X ∪f Y is closed if and only if f is closed.

5. If X and Y are Hausdorff and X ′ ⊆ X is compact then X ∪f Y is Hausdorff.

6. If X is compact and X ∪f Y is Hausdorff then X 7→ g(X) is a quotient map.

Solution. We already know that the set-theoretic pushout exists. Let iX : X ↪→
X t Y and iY : Y ↪→ X t Y denote the two inclusions and p : X t Y → X ∪f Y the
quotient map. Notice that g = p ◦ iX and j = p ◦ iY . The topology on X ∪f Y is the
quotient topology of X tY/ ∼, hence p : X tY → X tY/ ∼ is continuous and hence
also g and j are continuous. Given another pushout C, then there exists a unique
morphism φ : X∪f Y → C in the set-theoretic sense. But since the topology of X∪f Y
is the smallest topology such that the maps g and j are continuous, the map φ will
automatically be continuous. Let [x] denote the equivalence class of x ∈ X t Y/ ∼.

1. Since j is injective, to show that j is a closed embedding it suffices to show
that j(C) is closed in X ∪f Y whenever C is closed in Y . Since X ∪f Y
has (by definition) the quotient topology induced by p, a set B ⊆ X ∪f Y
is closed if and only if both g−1(B) and j−1(B) is closed. Since j is injective,
j−1(j(C)) = C, and thus it suffices to check that g−1(j(C)) is closed. But
g−1(j(C)) = ı(f−1(C)), which is closed as ı is a closed embedding.

2. The image [X \X ′] of g is the quotient of the set X \X ′. The map

[X \X ′]→ X \X ′

[x] 7→ x

is a well-defined, continuous inverse of g|X\X′ . Hence g|X\X′ is a homeomor-
phism onto its image. Moreover, if U is an open neighbourhood of x ∈ X \X ′
then U is open in X t Y as X \ X ′ open in X. Then we have p−1([U ]) = U ,
since U ∈ x \X ′. This is open in X t Y .
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3. A point q ∈ X ∪f Y is closed if and only if p−1([q]) is closed in X t Y . If q ∈ Y
then p−1([q]) = f−1(q) t q, which is closed. If q ∈ X \X ′ then p−1([q]) = q is
also closed.

4. Let Z := Z1 t Z2 ⊂ X t Y . Then one checks that

p−1([Z]) = Z ∪ f(Z1 ∩X ′) ∪ f−1(f(Z1 ∩X ′)) ∪ f−1(Z2).

Thus [Z] is closed in X ∪f Y if and only if f(Z1 ∩X ′) ∪ Z2 is closed in Y . It
follows that p is closed if and only if f is closed.

5. Notice that if X ′ is closed and Y is Hausdorff then the quotient map p : XtY →
X ∪f Y is closed. Indeed, let Z ⊂ X ′ be closed, then Z is compact since X ′ is
compact. Hence f(Z) ⊂ Y is a compact subset of a Hausdorff space and thus
f is closed. Then by the previous part the quotient map p is also closed.

Now let a, b ∈ X ∪f Y be distinct points. Then p−1(a) and p−1(b) are disjoint
non-empty compact subsets of X t Y . Since X t Y is Hausdorff (as X and Y
are), there exist disjoint open sets U, V with p−1(a) ⊂ U and p−1(b) ⊂ V . Since
p is closed, there exist1 open subsets U ′ and V ′ of X ∪f Y with a ∈ U ′, b ∈ V ′
and p−1(U ′) ⊂ U , p−1(V ′) ⊂ V . Moreover the sets U ′ and V ′ are disjoint as U
and V were.

6. In order to show that g : X → g(X) is a quotient map we need to prove it is
surjective and a set [Z] ⊂ g(X) is closed if and only if g−1([Z]) is closed. As
X is compact an g continuous also g(X) is compact and hence closed, since
X ∪f Y is Hausdorff. Conversely, if [Z] ⊂ g(X) is closed then p−1([Z]) is closed
in X by the definition of the topology of X ∪f Y . But as Z ⊂ g(X) it follows
that g−1([Z]) = i−1

x ◦ p−1([Z]) is closed in X.

Problem I.5 (†). Compute the homology of CPn. Why doesn’t this work for RPn?2

Solution. By induction we want to show

Hi(CPn) ∼=

{
Z i = even, i ≤ 2n

0 else.

Notice that CP 0 = S1/ ∼ is a point and thus

Hi(CP 0) ∼=

{
Z i = 0

0 i = else

1This is a general fact about closed maps: if h : X → Y is a closed map between two topological spaces,
W ⊂ Y , and U ⊂ X is an open subset of X with h−1(W ) ⊂ U then there exists an open set V ⊂ Y with
W ⊂ V and h−1(V ) ⊂ U . Indeed, take

V := Y \ h(X \ U).

Since U is open, X\U is closed, and hence as h is closed so is h(X\U). Thus V is open. Since h−1(W ) ⊂ U
we have W ∩ h(X \U) = ∅, and thus W ⊂ V . Moreover h−1(V ) = X \ h−1(h(X \U)) ⊂ X \ (X \U) = U
as required.

2We will eventually be able to compute the homology of RPn, but not until Lecture 21.
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By Example 18.9 we know that CPn ∼= B2n ∪p CPn−1, where p : S2n−1 → CPn−1 is
the quotient map. By Proposition 18.13 we have an exact sequence

· · · → H2n(CPn−1)→ H2n

(
B2n ∪f CPn−1

)
→ H2n−1(S2n−1)

→ H2n−1(CPn−1)→ H2n−1

(
B2n ∪f CPn−1

)
→ H2n−2(S2n−1)→ . . .

But as H2n(CPn−1) = 0, H2n−1(CPn−1) = 0 and H2n−2(S2n−1) = 0, we have an
isomorphism

H2n(B2n ∪p CPn−1) ∼= H2n−1(S2n−1) ∼= Z

and
H2n−1(B2n ∪p CPn−1) = 0.

Moreover, by Corollary 18.14 Hi(CPn) ∼= Hi(CPn−1) for i ≤ 2n− 2.
This argument breaks down for RPn if n = 2.

Problem I.6 (†). Prove that for any n,m ≥ 0, the space Sm × Sn can be obtained
from Sm∨Sn by attaching a (m+n)-cell. Use this to compute the homology H•(S

n×
Sm) for all n,m ≥ 0.

Solution. Notice that Bm+n ∼= Bm ×Bn and ∂(Bm ×Bn) = ∂(Bm)×Bn ∪Bm ×
∂(Bn) ∼= Sm−1×Bn∪Bm×Sn−1. Let πn : Bn → Bn/Sn−1 ∼= Sn denote the quotient
map. Assume that Sm ∨Sn = (Sm×{p})∪ ({q}×Sn). Let f : Bm+n = Bm×Bn →
Sm × Sn be the map defined by f(x, y) = (πm(x), πn(y)). As πn : En → Sn \ {∗} is
a homeomorphism also f |Em+n : Em+n → Sm × Sn \ Sm ∨ Sn is a homeomorphism
and we conclude by Proposition 18.6 that Sn × Sm can be obtained from Sn ∨ Sm
by attaching a m+ n-cell.

Let g = f |∂Bm+n : Sm+n−1 → Sm ∨ Sn be the attaching map. If both m and n
are zero then S0 × S0 is the topological space consisting of four points and we have

Hi(S
0 × S0) ∼=

{
Z⊕ Z⊕ Z⊕ Z i = 0

0 otherwise

If m = 1 and n = 0 then S1 × S0 ∼= S1 t S1 and

Hi(S
1 × S0) ∼=

{
Z⊕ Z i = 0, 1

0 otherwise

and likewise for m = 0, n = 1. In the case m = n = 1, consider the long exact
sequence from Proposition 18.13

· · · → H2(S1 ∨ S1)→ H2

(
B2 ∪g S1 ∨ S1

)
→ H1(S1)

H1(g)−−−→ H1(S1 ∨ S1)

→ H1

(
B2 ∪g S1 ∨ S1

)
→ H0(S1)

H0(g)−−−→ H0(S1 ∨ S1)→ . . .

The induced map H1(g) sends a generator of H1(S1) to the class a+ b− a− b = 0,
where a, b ∈ H1(S1 ∨ S1) are the two generators. (Notice that S1 × S1 is the torus,
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which we can view as the square with opposite edges identified. (See Problem C.3).
The attaching map send the generator of H1(S1) to the boundary of the square, which
has class a + b − a − b).) Hence H1(g) is zero and as H2(S1 ∨ S1) = 0 we conclude
H2(S1 × S1) = H2

(
B2 ∪f S1 ∨ S1

) ∼= H1(S1) ∼= Z. H0(g) : H0(S1) → H0(S1 ∨ S1)
sends the class of a point to the class of a point and is therefor an isomorphism.
Hence H1

(
B2 ∪f S1 ∨ S1

) ∼= H1(S1 ∨ S1) ∼= Z⊕ Z. Thus

Hi(S
1 × S1) ∼=


Z i = 0, 2

Z⊕ Z i = 1

0 otherwise.

The remaining cases can be calculated by using Proposition 18.13 and Corollary 18.14.
If m 6= n we get

Hi(S
m × Sn) ∼=

{
Z i = 0,m, n,m+ n

0 otherwise

and if m = n we have

Hi(S
m × Sn) ∼=


Z i = 0,m+ n

Z⊕ Z i = m = n

0 otherwise.

6



Problem Sheet J

This Problem Sheet is based on Lecture 19 and Lecture 20. A (†) means I will use
the problem in lectures; a (?) means I think the problem is challenging.

Problem J.1. Let X be the subset of the closed strip in R2 between the line x = 0
and x = 1 consisting of the unit interval I and all the line segment through the origin
having slope 1/n for n ∈ N. See Figure J.1. Prove that I is a deformation retract of

Figure J.1: The space X.

X but not a strong deformation retract.

Problem J.2 (†). Let X ′ ⊂ X be a closed subspace with the property that there
exists a neighbourhood U of X ′ in X such that X ′ is a strong deformation retract
of U . Let ∗ the point in X/X ′ corresponding to X ′/X ′. Prove that {∗} is a strong
deformation retract of U/X ′ in X/X ′.

Problem J.3. Let X be a finite cell complex, and define the Euler characteristic
of X to be the number

χ(X) =
∑
i≥0

(−1)krankHk(X).

Let Nk denote the number of k-cells of X. Prove that

χ(X) :=
∑
k≥0

(−1)kNk.

Problem J.4. Let X and Y be finite cell complexes. Show that X × Y also carries
the structure of a finite cell complex. Prove that χ(X × Y ) = χ(X)χ(Y ).

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
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Problem J.5. Let X be a topological space with cell like filtration F . Suppose
〈ζ〉 ∈ Hn(X,F) comes from a cycle in ζ ∈ Hn(Fn, Fn−1) (i.e. ∂Fζ = 0.) Let

ı : Fn ↪→ X,  : (Fn, ∅) ↪→ (Fn, Fn−1),

denote inclusions. Show that there exists a homology class 〈c〉 ∈ Hn(Fn) such that
Hn()〈c〉 = ζ. Denote by 〈c〉′ := Hn(ı)〈c〉. Show that the isomorphism from Theorem
20.5 can be given explicitly by

Θ: Hn(X)→ Hn(X,F) 〈c〉′ 7→ 〈ζ〉.

Problem J.6. Suppose X and Y are topological spaces with cell-like filtrations
F = (Fn) and G = (Gn) respectively. Let us say a continuous map respects the
filtrations if f(Fn) ⊆ Gn for all n ≥ 0.

1. Show that such a map f gives rise to a chain map f# : C•(X,F) → C•(Y,G),
and hence also a map Hn(f) : Hn(X,F)→ Hn(Y,G) for all n ≥ 0.

2. Show that there is a well-defined category Filt whose objects are pairs (X,F)
where X is a topological space and F is a cell-like filtration and whose mor-
phisms are those continuous maps which respect the filtration. Prove that the
operation (X,F) 7→ C•(X,F) defines a functor Filt→ Comp.

3. Prove that the isomorphism between singular homology and the homology of
the cell-like filtration is natural in the sense that if f : (X,F) → (Y,G) is a
continuous map respecting the filtrations then the following diagram commutes:

Hn(X) Hn(X,F)

Hn(Y ) Hn(Y,G)

Θ

Hn(f) Hn(f)

Θ

where horizontal maps are the isomorphisms from the previous problem, and
the two vertical maps are the induced maps on homology. The right-hand one
comes from part (1) above, and the left-hand one is just the normal map induced
by singuar homology.
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Solutions to Problem Sheet J

This Problem Sheet is based on Lecture 19 and Lecture 20. A (†) means I will use
the problem in lectures; a (?) means I think the problem is challenging.

Problem J.1. Let X be the subset of the closed strip in R2 between the line x = 0
and x = 1 consisting of the unit interval I and all the line segment through the origin
having slope 1/n for n ∈ N. See Figure J.1. Prove that I is a deformation retract of

Figure J.1: The space X.

X but not a strong deformation retract.

Solution. The space X is given by {(x, 1
nx) | x ∈ [0, 1]}∪{(x, 0) | x ∈ [0, 1]}, where

we define I := {(x, 0) | x ∈ [0, 1]}. The homotopy

H : X × [0, 1]→ I

((x,
1

n
x), t)→

{
(x(1− 2t), 1

nx(1− 2t) 0 ≤ t ≤ 1/2

(x(2t− 1), 0) 1/2 ≤ t ≤ 1

((x, 0), t)→

{
(x(1− 2t), 0) 0 ≤ t ≤ 1/2

(x(2t− 1), 0) 1/2 ≤ t ≤ 1

is such that H(·, 0) = idX , H(x, 1) ∈ I for all x ∈ X and H(x′, 1) = x′ for all x′ ∈ I
and hence defines a deformation retract of X onto I. Suppose we could find a strong
deformation retract, i.e. such that H(x′, t) = x′ for all t and all x′ ∈ I. Let G denote
the corresponding homotopy. Let (x, 0) ∈ I with x > 0. Every δ-neighbourhood of
(x, 0) contains a point (x, 1

nx) for some n big enough. G must map ((x, 1/nx), t) to
the point (0, 0) for some t but leaves (x, 0) constant for every t. This contradicts the
continuity of G.

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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Problem J.2 (†). Let X ′ ⊂ X be a closed subspace with the property that there
exists a neighbourhood U of X ′ in X such that U is a strong deformation retract
of X. Let ∗ the point in X/X ′ corresponding to X ′/X ′. Prove that {∗} is a strong
deformation retract of U/X ′ in X/X ′.

Solution. Let H : U × I → X ′ define a strong deformation retract. In particular
H(x′, t) = x′ for all x′ ∈ X ′. Hence H descends to a map G : U/X ′ × I → X ′/X ′

such that G({∗}, t) = {∗} for all t. This defines a strong deformation retract of U/X ′

to {∗}.

Problem J.3. Let X be a finite cell complex, and define the Euler characteristic
of X to be the number

χ(X) =
∑
i≥0

(−1)krankHk(X).

Let Nk denote the number of k-cells of X. Prove that

χ(X) :=
∑
k≥0

(−1)kNk.

Solution. Let n be the dimension of X. By Theorem 20.5 we have Hcell
• (X) ∼=

H•(X) and hence also their ranks coincide in all degrees. Moreover, by definition we
have Hcell

k (X) = ker ∂k
im ∂k+1

, where ∂ = ∂cell denotes the differential of the cellular chain

complex. The exact sequence

0→ ker(∂k)→ Ck → im(∂k)→ 0

shows that Nk = rank ker(∂k) + rank(im ∂k). Similarly the exact sequence

0→ im(∂k)→ ker(∂k)→ Hk → 0

shows that rankHk(X) = rank ker(∂k)− rank im(∂k+1). Now

χ(X) =
∑
i≥0

(−1)krankHk(X)

=
∑
k≥0

(−1)krankHcell
k (X)

=
∑
k≥0

(−1)k
(
rank ker(∂k)− rank im(∂k+1)

)
=
∑
k≥0

(−1)krank ker(∂k) + (−1)k+1rank im(∂k+1)

= (−1)n+1rank im(∂n+1) +
∑

n≥k≥1

(−1)k
(
rank ker(∂k) + rank im(∂k)

)
+ rank ker(∂0)

=
∑
k≥0

(−1)kNk,

where the last equality follows from the fact that ∂0 = 0 and hence rank ker(∂0) = N0

and im ∂n+1 = 0.
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Problem J.4. Let X and Y be finite cell complexes. Show that X × Y also carries
the structure of a finite cell complex. Prove that χ(X × Y ) = χ(X)χ(Y ).

Solution. Given a structure of a cell complex on X with cells Enαα of dimension nα
and attaching maps fα. Likewise a cell structure on Y with cells E

nβ
β of dimension

nβ and attaching maps fβ. A structure of a cell complex on X × Y is given by the
cells (Eα × Eβ)nα+nβ , which have attaching maps fα × fβ and dimension nα + nβ.
Define recursively the subspace (X × Y )n as the space obtained from (X × Y )n−1

by attaching cells of the form (Eα × Eβ)nα+nβ , where n = nα + nβ. As X × Y
carries the product topology and X and Y carry the colimit topology of their cell
decompositions, also X × Y carries the colimit topology for the cell decomposition
defined above.

Problem J.5. Let X be a topological space with cell like filtration F . Suppose
〈ζ〉 ∈ Hn(X,F) comes from a cycle in ζ ∈ Hn(Fn, Fn−1) (i.e. ∂Fζ = 0.) Let

ı : Fn ↪→ X,  : (Fn, ∅) ↪→ (Fn, Fn−1),

denote inclusions. Show that there exists a homology class 〈c〉 ∈ Hn(Fn) such that
Hn()〈c〉 = ζ. Denote by 〈c〉′ := Hn(ı)〈c〉. Show that the isomorphism from Theorem
20.5 can be given explicitly by

Θ: Hn(X)→ Hn(X,F) 〈c〉′ 7→ 〈ζ〉.

Solution. As ζ ∈ Hn(Fn, Fn−1) is a cycle ∂Fζ = ηn−1 ◦ δn(ζ) = 0. Recall that
δn is the connecting homomorphism of the exact sequence of the pair (Fn, Fn−1)
and ηn−1 = Hn−1(jn−1), where jn−1 : (Fn−1, ∅) ↪→ (Fn−1, Fn−2) is the inclusion.
The map ηn−1 is injective, hence δn−1(ζ) = 0 and thus it follows from the long exact
sequence of the pair (Fn, Fn−1) that there exists a 〈c〉 ∈ Hn(Fn) with Hn(jn)〈c〉) = ζ.
Consider the diagram as in the proof of Theorem 20.5:

Hn+1(Fn+1, Fn) 0

0 Hn(Fn) Hn(Fn, Fn−1) Hn−1(Fn−1)

Hn(Fn+1) Hn−1(Fn−1, Fn−2)

0

∂n+1
δn+1

ηn

δn

∂n
ηn−1

We have isomorphisms (see the proof of Theorem 20.5)

Hn(X) ∼= Hn(Fn+1) ∼= Hn(Fn)/ im(δn+1)

∼=
im(ηn)

im(∂n+1)
∼=

ker(∂n)

im(∂n+1)
.

Clearly, 〈c′〉 ∈ Hn(X) is mapped to the equivalence class of [〈c〉] ∈ Hn(Fn)/ im(δn+1).
The isomorphism Hn(Fn)/ im(δn+1) ∼= im ηn

im ∂n+1
is induced by the map ηn. Hence [〈c〉]

is mapped to 〈ζ〉 ∈ ker ∂n
im ∂n+1

= Hn(X,F).
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Problem J.6. Suppose X and Y are topological spaces with cell-like filtrations
F = (Fn) and G = (Gn) respectively. Let us say a continuous map respects the
filtrations if f(Fn) ⊆ Gn for all n ≥ 0.

1. Show that such a map f gives rise to a chain map f# : C•(X,F) → C•(Y,G),
and hence also a map Hn(f) : Hn(X,F)→ Hn(Y,G) for all n ≥ 0.

2. Show that there is a well-defined category Filt whose objects are pairs (X,F)
where X is a topological space and F is a cell-like filtration and whose mor-
phisms are those continuous maps which respect the filtration. Prove that the
operation (X,F) 7→ C•(X,F) defines a functor Filt→ Comp.

3. Prove that the isomorphism between singular homology and the homology of
the cell-like filtration is natural in the sense that if f : (X,F) → (Y,G) is a
continuous map respecting the filtrations then the following diagram commutes:

Hn(X) Hn(X,F)

Hn(Y ) Hn(Y,G)

Θ

Hn(f) Hn(f)

Θ

where horizontal maps are the isomorphisms from the previous problem, and
the two vertical maps are the induced maps on homology. The right-hand one
comes from part (1) above, and the left-hand one is just the normal map induced
by singular homology.

Solution.

1. The chain map f# : C•(X,F)→ C•(Y,G) is defined as

Hn(fn) : Hn(Fn, Fn−1)→ Hn(Gn, Gn−1).

Let ηn−1 = Hn−1(jn−1), where jn−1 : (Fn−1, ∅) ↪→ (Fn−1, Fn−2) is the inclu-
sion. And let δn be the connecting homomorphism of the exact sequence of the
pair (Fn, Fn−1). Recall that the boundary operator ∂n of the chain complex
C•(X,F) is given by the composition of those two maps, i.e. ∂n = ηn−1 ◦ δn.
It therefore suffices to show that H•(f•) commutes with both η and δ. It fol-
lows from the exact sequence of the pair (Fn, Fn−1) (see Proposition 12.3) that
δn ◦Hn(fn) = Hn−1(fn−1)◦δn−1. As fn respects the filtration and jn is just the
inclusion we must have that fn−1jn−1 = jn−1fn−1. Thus ηn−1 ◦Hn−1(fn−1) =
Hn−1(jn−1)◦Hn−1(fn−1) = H(jn−1fn−1) = H(fn−1jn−1) = Hn−1(fn−1)◦ηn−1,
where we used the fact that H• is a functor.

2. One easily sees that the first two axioms of a category are fulfilled. The
third axiom is also fulfilled, as the identity map of the topological space X
is continuous and respects the filtration. It is left to show that the operation
(X,F) 7→ C•(X,F) defines a functor Filt→ Comp. The functor send (X,F) to
C•(X,F) and a continuous map f : X → Y which respects the filtration to the
chain map Hn(fn) : Hn(Fn, Fn−1) → Hn(Gn, Gn−1). As H• is a well-defined
functor the claim follows.
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3. The isomorphism Θ is the compositon of the maps ηn := Hn(jn) andHn(in)−1|imHn(in) =
Hn(i−1

n |im in). As f respects the filtration it commutes with i and j. Since H•
is a functor also Hn(f) commutes with Hn(i−1

n |im in) and Hn(j).
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Problem Sheet K

This Problem Sheet is based on Lectures 21 and 22. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem K.1. Let p and q be relatively prime integers. Think of S3 as the pairs
(z, w) ∈ C2 with |z|2 + |w|2 = 1. Let ζ = e2πi/p be a primitive pth root of unity, and
define f : S3 → S3 by

f(z, w) := (ζz, ζqw).

Define an equivalence relation on S3 by saying that (z, w) ∼ (z′, w′) if (z′, w′) =
fk(z, w) for some integer k. The quotient space S3/ ∼ is called a lens space and
denoted by L(p, q).

1. Show that L(p, q) is a compact Hausdorff space.

2. Identify L(1, 1) and L(2, 1).

3. Show that if q ≡ q′ mod p then L(p, q) = L(p, q′).

Problem K.2. Show that the following1 defines a cellular decomposition of S3 having
p cells in dimensions 0, 1, 2 and 3:

E0
k :=

{
(z, 0) ∈ S3 | arg z =

2πk

p

}
k=0,1,2,...p−1

E1
k :=

{
(z, 0) ∈ S3 | 2πk

p
< arg z <

2π(k + 1)

p

}
k=0,1,2,...p−1

E2
k :=

{
(z, w) ∈ S3 | argw =

2πk

p

}
k=0,1,2,...p−1

E3
k :=

{
(z, w) ∈ S3 | 2πk

p
< argw <

2π(k + 1)

p

}
k=0,1,2,...p−1

.

Use the cellular boundary formula and this cell decomposition to give another com-
putation of the homology of S3.

Problem K.3. Show that the quotient map S3 → L(p, q) gives rise to a cellular
decomposition of L(p, q) with exactly one cell in dimension 0, 1, 2 and 3. Use this
to compute the homology of L(p, q). Hint: Use the decomposition of S3 from the
previous question!

Problem K.4 (†). Let C and D be two categories and S, T : C → D two functors.
Suppose Φ: S → T is a natural transformation. Prove that Φ is a natural isomor-
phism if and only if there is a natural transformation Ψ: T → S such that Φ◦Ψ = idS
and Ψ ◦ Φ = idT .

Will J. Merry and Berit Singer, Algebraic Topology I. Last modified: Sept 01, 2018.
1If z = reiθ with r > 0 and 0 ≤ θ < 2π then arg z := θ.
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Problem K.5. Let C be a category and C ∈ obj(C). Consider the hom-functor

T : C→ Sets

defined as follows:

• Objects: For D ∈ obj(C), set T (D) := Hom(C,D).

• Morphisms: If f : A→ B in C then

T (f) : Hom(C,A)→ Hom(C,B),

is defined by
T (f)(h) := f ◦ h.

One normally writes this functor as T = Hom(C,�).

1. Let {∗} be a set with one element. Prove that Hom({∗},�) : Sets → Sets is
naturally isomorphic to the identity functor on Sets.

2. Let C be a category, C ∈ obj(C) and S : C→ Sets a functor. Prove the Yoneda
Lemma2: there is a bijection from Nat(Hom(C,�), S) to S(C) given by

Φ 7→ Φ(C)(idC).

In particular, this shows that Nat(Hom(C,�), S) is always a set.

Problem K.6 (†). Let (H•, δ) be a homology theory satisfying the first four axioms
(homotopy, exact sequence, excision and dimension). Let (Xn, X

′
n), 1 ≤ n ≤ N be a

finite family of pairs of spaces. Denote by

ın : (Xn, X
′
n) ↪→

(
N⊔
n=1

Xn,

N⊔
n=1

X ′n

)

the inclusion. Prove that for all k ≥ 0, the map

N∑
n=1

Hk(ın) :
N⊕
n=1

Hk(Xn, X
′
n)→ Hk

(
N⊔
n=1

Xn,
N⊔
n=1

X ′n

)
.

is an isomorphism.

Problem K.7 (†). Let X1 and X2 be subspaces of X such that X = X◦1 ∪X◦2 . Set
X0 := X1 ∩ X2. Let (H•, δ) be a homology theory satisfying the first four axioms.

2This result is a generalisation of Cayley’s Theorem from group theory: that every group G is isomor-
phic to a subgroup of the symmetric group acting on G. Meta-exercise: Make this statement precise.
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Prove there is a commutative braid of the form:

. . . Hn(X1) Hn(X,X2) Hn−1(X2) . . .

Hn(X0) Hn(X) Hn−1(X0) Hn−1(X)

. . . Hn(X2) Hn(X,X1) Hn−1(X1) . . .

where all four braids are exact. Deduce that the Mayer-Vietoris exact sequence holds
for (H•, δ).
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Solutions to Problem Sheet K

This Problem Sheet is based on Lectures 21 and 22. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem K.1. Let p and q be relatively prime integers. Think of S3 as the pairs
(z, w) ∈ C2 with |z|2 + |w|2 = 1. Let ζ = e2πi/p be a primitive pth root of unity, and
define f : S3 → S3 by

f(z, ) := (ζz, ζqw).

Define an equivalence relation on S3 by saying that (z, w) ∼ (z′, w′) if (z′, w′) =
fk(z, w) for some integer k. The quotient space S3/ ∼ is called a lens space and
denoted by L(p, q).

1. Show that L(p, q) is a compact Hausdorff space.

2. Identify L(1, 1) and L(2, 1).

3. Show that if q ∼ q′ mod p then L(p, q) = L(p, q′).

Solution.

1. S3/ ∼ is compact as p : S3 → S3/ ∼ is continuous and S3 is compact. Let
p : S3 → S3/ ∼ be the quotient map. It is open since S3/ ∼ is equipped with
the quotient topology. Therefor the map

f : S3 × S3 → S3/ ∼ ×S3/ ∼
((z, w), (z′, w′)) 7→ (p(z, w), p(z′, w′))

is also open. Let R := {((z, w), (z′, w′))|(z, w) ∼ (z′, w′)}. The set S3×S3\R is
open (if (z, w) � (z′, w′) then this identity also holds in an open neighbourhood
of ((z, w), (z′, w′))). Now S3/ ∼ ×S3/ ∼ \∆ = f(S3 × S3 \R) and this is open
as f is open, which shows that S3/ ∼ ×S3/ ∼ is Hausdorff.

2. If p = q = 1 then ζ = 1 and thus L(1, 1) ∼= S3. If p = 2 and q = 1 then
(z, w) ∼ (z′, w′) ⇐⇒ (z, w) = ±(z′, w′) and thus L(2, 1) ∼= RP 3.

3. If q ≡ q′ mod p then {ζ0, ζ1, . . . , ζqp} = {ζ0, ζ1, . . . , ζq
′p} and hence R = R′

which shows that L(p, q) ∼= L(p, q′).

Problem K.2. Show that the following1 defines a cellular decomposition of S3 having

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
1If z = reiθ with r > 0 and 0 ≤ θ < 2π then arg z := θ.
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p cells in dimensions 0, 1, 2 and 3:

E0
k :=

{
(z, 0) ∈ S3id arg z =

2πk

p

}
k=0,1,2,...p−1

E1
k :=

{
(z, 0) ∈ S3id

2πk

p
< arg z <

2π(k + 1)

p

}
k=0,1,2,...p−1

E2
k :=

{
(z, w) ∈ S3id argw =

2πk

p

}
k=0,1,2,...p−1

E3
k :=

{
(z, w) ∈ S3id

2πk

p
< argw <

2π(k + 1)

p

}
k=0,1,2,...p−1

.

Use the cellular boundary formula and this cell decomposition to give another com-
putation of the homology of S3.

Solution. The space S3 has a cell decomposition, which is given by X0 := ∪p−1
k=1E

0
k ,

X1 := {(z, 0) ∈ S3}, X2 := {(z, w) ∈ S3| arg(w) = 2πk
p , k ∈ {0, . . . , p − 1}} and

X3 = S3. X1 is obtained from X0 by attaching the p − 1 1-cells E0
k with the

attaching maps

f1|S0
k

: S0
k → X0

0 7→ E0
k

1 7→ E0
k+1.

Similarly X2 is obtained from X1 by attaching the p− 1 2-cells with attaching maps

f2|S1
k

: S1
k → X1

eiφ 7→ (eiφ, 0).

Finally, X3 is obtained from X2 by attaching p− 1 3-cells with attaching maps

f3|S2
k

: S2
k → X2

((1− z2)eiφ, z) 7→

{
(
√

(1− z2)eiφ, ze2πk/p) z ≥ 0

(
√

(1− z2)eiφ, ze2π(k+1)/p) z ≤ 0
,

where z ∈ [−1, 1], φ ∈ [0, 2π) and (
√

(1− z2)eiφ, z) gives a parametrisation of the
closed 3-ball. Hence the cell decomposition has p cells in dimensions 0, 1, 2, 3 and no
other cells. The cellular chain complex thus looks (up to isomorphism) like

. . . 0 Zp Zp Zp Zp 0 . . .
∂3 ∂2 ∂1

2



The boundary operator ∂i is the composition of δi, which is the connecting homo-
morphism of the pair (Xi, Xi−1), and ηi−1 = Hi−1(ji−1), where ji−1 : (Xi−1, ∅) ↪→
(Xi−1, Xi−2) is the inclusion.

Now we are ready to compute the boundary operators. By repeatedly using the
Cellular Boundary Formula (Theorem 20.11) we see:

1. In dimension 3 we have that ∂4 ≡ 0 and ∂3(E3
k) = E2

k+1−E2
k . Thus Hcell

3 (S3) ∼=
H3(S3) ∼= Z.

2. Moreover, ∂2(E2
k) =

∑p−1
k=0E

1
k for every k. Thus E2

k+1 −E2
k for k = 0, . . . , p− 2

form a basis of ker(∂2) ∼= Zp−1 ⊂ Zp and we see that ker ∂2 = im ∂3 which shows
that Hcell

2 (S3) ∼= H2(S3) ∼= 0.

3. Now, ∂1(E1
k) = E0

k+1 − E0
k and ∂1(E1

p−1) = E0
0 − E0

p−1. Hence ker(∂1) =

Z ·
∑p−1

k=1E
0
k and im(∂2) = ker(∂1). Thus Hcell

1 (S3) ∼= H1(S3) ∼= 0.

4. As δ0 ≡ 0 a basis of ker(∂0) is given by {E0, E0
1 − E0

0 , . . . , E
0
p−1 − E0

p−2}. But

E0
k+1 − E0

k ∈ im(∂1). Thus ker(∂0)/ im(∂1) ∼= Z · E0
0 and hence Hcell

0 (S3) ∼=
H0(S3) ∼= Z.

Problem K.3. Show that the quotient map S3 → L(p, q) gives rise to a cellular
decomposition of L(p, q) with exactly one cell in dimension 0, 1, 2 and 3. Use this
to compute the homology of L(p, q). Hint: Use the decomposition of S3 from the
previous question!

Solution. Let p : S3 → S3/ ∼≡ L(p, q) denote the quotient map. Notice that
p(Edk) = p(Edl ) for every k = 0, 1, 2, 3 and every k, l ∈ {0, . . . , p − 1}. Thus the cell
decomposition from the previous exercise gives rise to a cell decompositon of L(p, q)
with one cell in dimensions 0, 1, 2, 3 and no other cells. Let Ed := p(Edk) denote
the d-cell of L(p, q). From the previous exercise it follows immediately that ∂3 ≡ 0,
∂2(E2) = pE1, and ∂1 ≡ 0. Thus we see that

Hi(L(p, q)) ∼= Hcell
i (L(p, q)) ∼=


Z i = 0

Z/pZ i = 1

0 i = 2

Z i = 3.

Problem K.4 (†). Let C and D be two categories and S, T : C → D two functors.
Suppose Φ: S → T is a natural transformation. Prove that Φ is a natural isomor-
phism if and only if there is a natural transformation Ψ: T → S such that Φ◦Ψ = idS
and Ψ ◦ Φ = idT .

Solution. If Φ is a natural isomorphism then for every A,B ∈ obj(C) there exists
Ψ(A) and Ψ(B) such that

S(A) T (A) S(A)

S(B) T (B) S(B),

Φ(A)

S(f) T (f)

Ψ(A)

S(f)

Φ(B) Ψ(B)
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where the left rectangle is commutative and Ψ(A)◦Φ(A) = idS(A) and Ψ(B)◦Φ(B) =
idS(B). As idS(A)◦S(f) = S(f)◦idS(A) also the right square is commutative. Similarly
one shows that Φ(A) ◦ Ψ(A) = idT (A). Hence Ψ is a natural transformation. The
other direction is obvious.

Problem K.5. Let C be a category and C ∈ obj(C). Consider the hom-functor

T : C→ Sets

defined as follows:

• Objects: For D ∈ obj(C), set T (D) := Hom(C,D).

• Morphisms: If f : A→ B in C then

T (f) : Hom(C,A)→ Hom(C,B),

is defined by
T (f)(h) := f ◦ h.

One normally writes this functor as T = Hom(C,�).

1. Let {∗} be a set with one element. Prove that Hom({∗},�) : Sets → Sets is
naturally isomorphic to the identity functor on Sets.

2. Let C be a category, C ∈ obj(C) and S : C→ Sets a functor. Prove the Yoneda
Lemma2: there is a bijection from Nat(Hom(C,�), S) to S(C) given by

Φ 7→ Φ(C)(idC).

In particular, this shows that Nat(Hom(C,�), S) is always a set.

Solution. 1. Define the natural transformation ev{∗} : Hom({∗}, ·)→ id by

ev∗(X) : Hom({∗}, X)→ id(X)

λ 7→ λ(∗).

Moreover, let Φ : id→ Hom({∗}, ·) be given by

Φ : id(X)→ Hom({∗}, X)

x 7→ (λx : ∗ 7→ x).

Then for every X ∈ obj(Sets) we have ev∗(X) ◦ Φ(X) = idX and Φ(X) ◦
ev∗(X) = idHom({∗},X), so ev∗ : Hom({∗}, ·)→ id is a natural isomorphism.

2This result is a generalisation of Cayley’s Theorem from group theory: that every group G is isomor-
phic to a subgroup of the symmetric group acting on G. Meta-exercise: Make this statement precise.
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2. Let J : Nat(Hom(C,�), S) → S(C) : φ 7→ φ(C)(idC) denote the Yoneda map.
We start by proving that J is surjective. Let x ∈ S(C). For D ∈ obj(C) let

φx(D) : Hom(C,D)→ S(D)

λ 7→ S(λ)(x).

Then φx : Hom(C,�) → S is a natural transformation, as for every D,E ∈
obj(C) and any f ∈ Hom(D,E) the diagram

Hom(C,D) S(D)

Hom(C,E) S(E)

φx(D)

T (f) S(f)

φx(E)

commutes. Indeed φx(E)◦T (f)(λ) = φx(E)(f◦λ) = S(f◦λ)(x) = S(f)◦S(λ)(x)
and S(f) ◦ φx(D)(λ) = S(f)S(λ)(x).

To prove injectivity, suppose that J(φ) = φ(C)(idC) = ψ(C)(idC) = J(ψ).
For every D ∈ obj(C) and for every f ∈ Hom(C,D) we have φ(D)(f) =
φ(D) ◦ T (f)(idC) = S(f) ◦ φ(C)(idC) = S(f)ψ(C)(idX) = ψ(D) ◦ T (f)(idC) =
ψ(D)(f). Hence φ(D) = ψ(D) for every D ∈ obj(C), which implies that φ = ψ.

Problem K.6 (†). Let (H•, δ) be a homology theory satisfying the first four axioms
(homotopy, exact sequence, excision and dimension). Let (Xn, X

′
n), 1 ≤ n ≤ N be a

finite family of pairs of spaces. Denote by

ın : (Xn, X
′
n) ↪→

(
N⊔
n=1

Xn.
N⊔
n=1

X ′n

)

the inclusion. Prove that for all k ≥ 0, the map

N∑
n=1

Hk(ın) :

N⊕
n=1

Hk(Xn, X
′
n)→ Hk

(
N⊔
n=1

Xn.

N⊔
n=1

X ′n

)
.

is an isomorphism.

Solution. The Excision Axiom tells us that the inclusion induces an isomorphism

Hn(X,X ′) ∼= Hn(X t Y,X ′ t Y )

for any space Y . By induction, we need only consider the case N = 2. Moreover, by
the usual argument involving the Five Lemma, it is sufficient to consider the absolute
groups (see for instance the end of the proof of Theorem 21.12 in Lecture 22.) By
functoriality of Hn and the Exact Sequence axion, the following diagram satisfies the
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hypotheses of the Hexagon Lemma H.2:

0

Hn(X1 tX1, X2) Hn(X1 tX2, X1)

Hn(X1 tX2)

Hn(X1) Hn(X2)

0

Thus part (1) of the Hexagon Lemma tells us that

Hn(X1)⊕Hn(X2) ∼= Hn(X1 tX2),

which is what we wanted to show.

Problem K.7 (†). Let X1 and X2 be subspaces of X such that X = X◦1 ∪X◦2 . Set
X0 := X1 ∩ X2. Let (H•, δ) be a homology theory satisfying the first four axioms.
Prove there is a commutative braid of the form:

. . . Hn(X1) Hn(X,X2) Hn−1(X2) . . .

Hn(X0) Hn(X) Hn−1(X0) Hn−1(X)

. . . Hn(X2) Hn(X,X1) Hn−1(X1) . . .

δ2 Hn−1(i2)Hn(j2)

Hn(j1)

Hn−1(i02)

Hn−1(i01)δ1 Hn−1(i1)

where all four braids are exact. Deduce that the Mayer-Vietoris exact sequence holds
for (H•, δ).

Solution. Consider the long exact sequence of the pair (X1, X0). It follows with
excision that Hn(X1, X0) ∼= Hn(X,X2) and Hi(X2, X0) ∼= Hi(X,X1). Hence the
long exact sequences of the pair (X1, X0) becomes

. . .→ Hn(X0)→ Hn(X1)→ Hn(X,X2)→ Hn−1(X0)→ . . . .

Similarly there is a long exact sequence

. . .→ Hn(X0)→ Hn(X2)→ Hn(X,X1)→ Hn−1(X0)→ . . . .

6



The pairs (X,X1) and (X,X2) give rise to long exact sequences

. . .→ Hn(X1)→ Hn(X)→ Hn(X,X1)→ Hn−1(X1)→ . . .

and
. . .→ Hn(X2)→ Hn(X)→ Hn(X,X2)→ Hn−1(X2)→ . . . .

Let ik : Xk ↪→ X and i0k : X0 ↪→ Xk be the inclusion for k = 1, 2. Similarly let
jk : (X, ∅) ↪→ (X,Xk) denote the inclusion and δk the boundary homomorphisms for
k = 1, 2. (See picture.) The maps in the long exact sequences above are induced by
these maps. Hence there exists a commutative braid with exact sequences as in the
picture. Now we have a sequence

. . .Hn(X)
δ1◦Hn(j1)−−−−−−→ Hn−1(X0)

(Hn−1(i01),Hn−1(i02))−−−−−−−−−−−−−−→ Hn−1(X1)⊕Hn−1(X2)
D−→ Hn−1(X)→ . . .

where D is given by (a, b) 7→ (Hn−1(i1)(a)−Hn−1(i2)(b)). It follows from the defini-
tion that this sequence is exact.
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Problem Sheet L

This Problem Sheet is based on Lectures 24 and 25. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem L.1 (†). Suppose A is an abelian group and {Bλ | λ ∈ Λ} is a (possibly
uncountable) family of abelian groups. Prove there is an isomorphism

A⊗
⊕
λ∈Λ

Bλ ∼=
⊕
λ∈Λ

(A⊗Bλ).

Problem L.2 (†). Suppose F and F ′ are free abelian groups. Prove that F ⊗ F ′ is
also free.

Problem L.3 (†). Suppose B is a torsion-free abelian group. Prove that �⊗B and
B ⊗� are exact functors.

Problem L.4 (†). Suppose T : Ab → Ab is an additive functor and 0 → A → B →
C → 0 is a split exact sequence. Prove that 0→ T (A)→ T (B)→ T (C)→ 0 is also
a split exact sequence.

Problem L.5. Let A = Z⊕Z⊕Z6 ⊕Z5 and let B = Z3 ⊕Z5. Compute A⊗B and
Tor(A,B).

Problem L.6 (?). Fix n ≥ 2. Consider the projection map p : Sn → RPn. Let
a : Sn → Sn be the antipodal map. For this problem you may assume the following
fact:

Fact: If σ : ∆m → RPn is a singular m-simplex, then are precisely two singu-
lar m-simplices σ̃1, σ̃2 : ∆m → Sn that satisfy p ◦ σ̃i = σ for i = 1, 2. Moreover
σ̃2 = a ◦ σ̃1

1.

Define a chain map

qm : Cm(RPn;Z2)→ Cm(Sn;Z2)

by σ 7→ σ̃1 + σ̃2.

1. Show that the following is a short exact sequence of chain complexes:

0→ C•(RPn;Z2)
q−→ C•(S

n;Z2)
p#−−→ C•(RPn;Z2)→ 0.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
1This follows from standard covering space theory that we will cover later on in the semester.
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2. Suppose f : Sn → Sn is an odd map (that is, f ◦a = a◦f). Let h : RPn → RPn
denote the induced map (so that p◦f = h◦p). Show that the following diagram
commutes for every m:

0 Cm(RPn;Z2) Cm(Sn;Z2) Cm(RPn;Z2) 0

0 Cm(RPn;Z2) Cm(Sn;Z2) Cm(RPn;Z2) 0

qm

h#

p#

f# h#

qm p#

3. Deduce that f : Hn(Sn;Z2) → Hn(Sn;Z2) is an isomorphism. Hint: Argue by
induction on m, using the associated long exact sequence in homology from the
short exact sequence of chain complexes in part (1).

4. Deduce that f has odd degree.

2



Solutions to Problem Sheet L

This Problem Sheet is based on Lectures 24 and 25. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem L.1 (†). Suppose A is an abelian group and {Bλ | λ ∈ Λ} is a (possibly
uncountable) family of abelian groups. Prove there is an isomorphism

A⊗
⊕
λ∈Λ

Bλ ∼=
⊕
λ∈Λ

(A⊗Bλ).

Solution. Let T be an abelian group and η : A ×
⊕

λ∈ΛBλ → T a bilinear map.
Consider the following universal property. For an abelian group C and ϕ : A ×⊕

λ∈ΛBλ → C a bilinear map, there exists a unique homomorphism f : T → C such
that the following diagram commutes:

A×
⊕

λ∈ΛBλ T

C

η

ϕ f
(L.1)

It suffices to show that
⊕

λ∈Λ(A ⊗ Bλ) together with the bilinear map η : A ×⊕
λ∈ΛBλ →

⊕
λ∈Λ(A⊗Bλ) : (a, (bλ)λ∈Λ) 7→ (a⊗ bλ)λ∈Λ satisfies this universal prop-

erty. Then Lemma 24.4 ensures that A⊗
⊕

λ∈ΛBλ
∼=
⊕

λ∈Λ(A⊗Bλ).
Let C be an abelian group and ϕ : A ×

⊕
λ∈ΛBλ → C a bilinear map. Let

bλ ∈
⊕

λ∈ΛBλ be the element that has bλ as the entry for index λ and entries zero
otherwise. Define ϕλ : A × Bλ → C by (a, bλ) 7→ ϕ(a, bλ). This map is bilinear
and thus by the universal property of A ⊗ Bλ there exists a unique homomorphism
fλ : A⊗Bλ → C such that fλ(a⊗ bλ) = ϕ(a, bλ). By the properties of the direct sum
there exists a unique homomorphism

f :
⊕

λ∈Λ(A⊗Bλ) → C
(a⊗ bλ)λ∈Λ 7→

∑
λ∈Λ fλ(a⊗ bλ).

But
∑

λ∈Λ fλ(a ⊗ bλ) =
∑

λ∈Λ ϕ(a ⊗ bλ) = ϕ(a ⊗
∑

λ∈Λ bλ) = ϕ(a, (bλ)λ∈Λ) and
thus f ◦ η = ϕ. In other words

⊕
λ∈Λ(A ⊗ Bλ) together with the bilinear map

η : A ×
⊕

λ∈ΛBλ →
⊕

λ∈Λ(A ⊗ Bλ) : (a, (bλ)) 7→ (a ⊗ bλ) satisfies the universal
property (L.1). Using the universal property one can also show that an explicit
isomorphism is given by

A⊗
⊕

λ∈ΛBλ →
⊕

λ∈Λ(A⊗Bλ)
a⊗ (bλ)λ∈Λ 7→ (a⊗ bλ)λ∈Λ.

Problem L.2 (†). Suppose F and F ′ are free abelian groups. Prove that F ⊗ F ′ is
also free.

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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Solution. Let B and B′ be basis of F and F ′ respectively. Then F ∼=
⊕

b∈B〈b〉 and
F ′ ∼=

⊕
b′∈B′〈b′〉. By the previous exercise we have

F ⊗ F ′ ∼=
⊕
b∈B
〈b〉 ⊗

⊕
b′∈B′
〈b′〉 ∼=

⊕
b∈B,b′∈B′

〈b〉 ⊗ 〈b′〉 ∼=
⊕
b⊗b′
〈b⊗ b′〉.

This proves that F ⊗ F ′ is free with basis {b⊗ b′ | b ∈ B, b′ ∈ B′}.

Problem L.3 (†). Suppose B is a torsion-free abelian group. Prove that �⊗B and
B ⊗� are exact functors.

Solution. Notice that a functor T is exact if and only if for every exact sequence

0 → C
f−→ D

g−→ E → 0 the sequence 0 → T (C)
T (f)−−−→ T (D)

T (g)−−−→ T (E) → 0 is also
exact. If B is finitely generated and torsion-free then it is free and thus isomorphic to
Zn for some n. Then Zn⊗G ∼= Gn by Proposition 24.8 and f⊗ idB becomes the map

(f, . . . , f). Moreover, applying �⊗B to a short exact sequence 0→ C
f−→ D

g−→ E → 0

yields the sequence 0→ Cn
(f,...,f)−−−−→ Dn (g,...,g)−−−−→ En → 0, which is also exact.

For the general case, we start with the following claim:

Claim. Let 0→ C
f−→ D be exact, and let A be any abelian group. If x ∈ ker(f⊗idA)

then there exists a finitely generated subgroup A′ ⊆ A and an element x′ ∈ C ⊗ A′
such that x′ ∈ ker(f ⊗ idA′ : C⊗A′ → D⊗A′) and such that x = (idC⊗ i)(x′), where
i : A′ → A is the inclusion.

Proof. Suppose x =
∑

k ck ⊗ ak. Then by assumption

n∑
k=1

f(ck)⊗ ak = 0 ∈ D ⊗A.

Let F be the free abelian group with basis D × A and let N be the subgroup of
F generated by all the relations that define the tensor product D ⊗ A (i.e. so that
D⊗A = F/N .) Then we have an exact sequence 0→ N → F

u−→ D⊗A→ 0, where
u(d, a) = d⊗ a. Since

∑
k f(ck)⊗ ak = 0 ∈ D⊗A, there m ≥ 1 and elements a′j ∈ A

and dj ∈ D for j = 1, . . . ,m such that

n∑
k=1

f(ck)⊗ ak =
m∑
j=1

u(dj , a
′
j).

Now let A′ denote the subgroup of A generated by the ak and the a′j . Then A′ is
finitely generated. Set

x′ :=
n∑
k=1

ck ⊗ ak ∈ C ⊗A′.

Then certainly (idC⊗ i)(x′) = x. Moreover (f⊗ idA′)(x
′) = 0 ∈ D⊗A′, since we have

ensured that all the relations that make (f ⊗ idA)(x) = 0 are present in D ⊗A′.
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Now we prove the result in the case where B is torsion-free. Let 0 → C
f−→

D
g−→ E → 0 be a short exact sequence. Consider the sequence 0 → C ⊗ B f⊗idB−−−−→

D⊗B g⊗idB−−−−→ E⊗B → 0. By Proposition 24.10 it is left to show that ker(f⊗idB) = 0.
Suppose x :=

∑k
i=1 ci⊗ bi) =∈ ker(f ⊗ idB). Let B′ be the subgroup of B given to us

by the claim, and let x′ ∈ C ⊗B′ be such that (idC ⊗ i)(x′) = x, where i : B′ → B is
the inclusion. Then B′ is torsion-free and finitely generated and thus it is free. But
this forces x′ = 0, since we already know that �⊗B′ is exact. Thus also x = 0, and
this completes the proof.

Problem L.4 (†). Suppose T : Ab → Ab is an additive functor and 0 → A → B →
C → 0 is a split exact sequence. Prove that 0→ T (A)→ T (B)→ T (C)→ 0 is also
a split exact sequence.

Solution. Notice that

Claim. A sequence 0 → A
f−→ B

g−→ C → 0 is split exact if and only if there exist
homomorphisms k : B → A and h : C → B such that

gf = 0

kf = idA

gh = idC

kh = 0

idB = fk + hg

.

Proof. If the sequence splits then k and h exist and by Proposition 12.15 the first
three equalities hold. By Proposition 12.16 we also have that B = im f ⊕ imh. As
g and k are surjective this implies B = im fk ⊕ imhg and thus idB = fk + hg.
Moreover, as kf = idA this also proves that kh = 0. For the other direction it
suffices to show that ker g ⊂ im f . Let x ∈ B such that g(x) = 0. Then x = idB(x) =
fk(x) + hg(x) = fk(x) and hence x ∈ im f .

As T is a functor it preserves the first four equalities. If T is also additive the
last equality is also preserved. This proves that T preserves split exact sequences.

Problem L.5. Let A = Z⊕Z⊕Z6 ⊕Z5 and let B = Z3 ⊕Z5. Compute A⊗B and
Tor(A,B).

Solution. We know from Proposition 24.8 and 25.6 and Problem L.1 that for abelian
groups A and Bλ the following identities hold:

A⊗ Z ∼= A

A⊗
⊕
λ∈Λ

Bλ ∼=
⊕
λ∈Λ

(A⊗Bλ)

Tor(Z, A) = 0

Tor(A,
⊕
λ∈Λ

Bλ) ∼=
⊕
λ∈Λ

T(A,Bλ∈Λ)
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We will prove the following general fact:

Claim. Zn ⊗ Zm ∼= Zgcd(n,m).

Proof. The homomorphism

φ : Z → Zn ⊗ Zm
1 7→ 1⊗ 1

is surjective. The greates common divisor gcd(n,m) can be defined as the smallest
positive integer d which can be written in the form d = ax + by, where x and y
are integers. If follows that kernel of φ is given by gcd(n,m)Z, which proves the
claim.

Another general fact is

Claim. Tor(Zn,Zm) ∼= Zgcd(n,m)

Proof. A short free resolution of Zn is

0→ Z 1 7→n−−−→ Z 17→1−−−→ Zn → 0.

Applying the fuctor �⊗ Zm gives

0→ Zm
17→n−−−→ Zm

17→1⊗1−−−−→ Zn ⊗ Zm → 0.

Then Tor(Zn,Zm) = ker(Zm
17→n−−−→ Zm) ∼= Zgcd(n,m).

Using these properties we compute

A⊗B ∼=(Z⊗ Z3)⊕ (Z⊗ Z5)⊕ (Z⊗ Z3)⊕ (Z⊗ Z5)

⊕ (Z6 ⊗ Z3)⊕ (Z6 ⊗ Z5)⊕ (Z5 ⊗ Z3)⊕ (Z5 ⊗ Z5)
∼=Z3 ⊕ Z5 ⊕ Z3 ⊕ Z5 ⊕ Z3 ⊕ 0⊕ 0⊕ Z5

∼=Z3
3 ⊕ Z3

3

and

Tor(A,B) ∼=
(
Tor(Z,Z3)⊕ Tor(Z,Z5)

)2 ⊕ Tor(Z6,Z3)⊕ Tor(Z6,Z5)

⊕ Tor(Z5,Z3)⊕ Tor(Z5,Z5)
∼=Tor(Z6,Z3)⊕ Tor(Z5,Z5)
∼=Z3 ⊕ Z5.

Problem L.6 (?). Fix n ≥ 2. Consider the projection map p : Sn → RPn. Let
a : Sn → Sn be the antipodal map. For this problem you may assume the following
fact:

Fact: If σ : ∆m → RPn is a singular m-simplex, then are precisely two singu-
lar m-simplices σ̃1, σ̃2 : ∆m → Sn that satisfy p ◦ σ̃i = σ for i = 1, 2. Moreover
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σ̃2 = a ◦ σ̃1
1.

Define a chain map

qm : Cm(RPn;Z2)→ Cm(Sn;Z2)

by σ 7→ σ̃1 + σ̃2.

1. Show that the following is a short exact sequence of chain complexes:

0→ C•(RPn;Z2)
q•−→ C•(S

n;Z2)
p#−−→ C•(RPn;Z2)→ 0

2. Suppose f : Sn → Sn is an odd map (that is, f ◦a = a◦f). Let h : RPn → RPn
denote the induced map (so that p◦f = h◦p). Show that the following diagram
commutes for every m:

0 Cm(RPn;Z2) Cm(Sn;Z2) Cm(RPn;Z2) 0

0 Cm(RPn;Z2) Cm(Sn;Z2) Cm(RPn;Z2) 0

qm

h#

p#

f# h#

qm p#

3. Deduce that Hn(f) : Hn(Sn;Z2)→ Hn(Sn;Z2) is an isomorphism. Hint: Argue
by induction on m, using the associated long exact sequence in homology from
the short exact sequence of chain complexes in part (1).

4. Deduce that f has odd degree.

Solution. We call the simplices σ̃1 and σ̃2 the lifts of σ.

1. The map p# is surjective as every σ : ∆k → RPn has two lifts σ̃1 and σ̃2. Since
we work with coefficients in Z2 the kernel of p# is generated by σ̃1 + σ̃2. Thus
ker p# = im qk. The map qk is injective, as the lift of a cycle will be a cycle
again. (If δ(τ) = σ, then δ(τ̃i) = σ̃i for i = 1, 2.) The boundaries ∂σ̃1 and ∂σ̃1

lift the boundary ∂σ, i.e. p#(∂σ̃i) = ∂σ for i = 1, 2. If follows that p# and q
commute with the boundary operators.

2. Notice that pfσ̃i = hpσ̃i = hσ, since pf = hp. Thus for every k-simplex
σ : ∆k → RPn with lifts σ̃i i = 1, 2, the two lifts of hσ are fσ̃i i = 1, 2. This
immediately implies that the left square in the diagram commutes. The right
square commutes since pf = hp.

3. Since Tor(Z,Z2) = 0 it follows from the Universal Coefficient Theorem that

Hi(S
n;Z2) ∼=

{
Z2, i = 0, n

0, i 6= 0, n.

Furthermore, Tor(Z2,Z2) ∼= Z2 and thus

Hi(RPn;Z2) ∼=

{
Z2, 0 ≤ i ≤ n,
0, otherwise.

1This follows from standard covering space theory that we will cover later on in the semester.
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Using these facts and part two of the exercise we get a long exact sequence in
homology

0 Hn(RPn,Z2) Hn(Sn,Z2) Hn(RPn;Z2) Hn−1(RPn;Z2) 0 ...

0 Hn(RPn,Z2) Hn(Sn,Z2) Hn(RPn;Z2) Hn−1(RPn;Z2) 0 ...

Hn(q)

Hn(f)

Hn(p)

Hn(f) Hn(f)

δ

Hn−1(f)

Hn(q) Hn(p) δ

... 0 Hi(RPn;Z2) Hi−1(RPn;Z2) 0 ...

... 0 Hi(RPn;Z2) Hi−1(RPn;Z2) 0 ...

Hi(f)

δ

Hi−1(f)

δ

... 0 H1(RPn;Z2) H0(RPn;Z2) H0(Sn;Z2) H0(RPn;Z2) 0

... 0 H1(RPn;Z2) H0(RPn;Z2) H0(Sn;Z2) H0(RPn;Z2) 0

H1(f)

δ

H0(f)

H0(q)

H0(f)

H0(p)

Hn(f)

δ H0(q) H0(p)

In this diagram all non-trivial homology groups are isomorphic to Z2 (apart
from H0(Sn;Z2) which is Z2⊕Z2.) Notice that a homomorphism Z2 → Z2 that
is either injective or surjective must be an isomorphism. Therefore by exactness
of the rows the above diagram simplifies to

0 Hn(RPn,Z2) Hn(Sn,Z2) Hn(RPn;Z2) Hn−1(RPn;Z2) 0 ...

0 Hn(RPn,Z2) Hn(Sn,Z2) Hn(RPn;Z2) Hn−1(RPn;Z2) 0 ...

∼=

Hn(f)

0

Hn(f) Hn(f)

∼=

Hn−1(f)

∼= 0 ∼=

... 0 Hi(RPn;Z2) Hi−1(RPn;Z2) 0 ...

... 0 Hi(RPn;Z2) Hi−1(RPn;Z2) 0 ...

Hi(f)

∼=

Hi−1(f)

∼=

... 0 H1(RPn;Z2) H0(RPn;Z2) H0(Sn;Z2) H0(RPn;Z2) 0

... 0 H1(RPn;Z2) H0(RPn;Z2) H0(Sn;Z2) H0(RPn;Z2) 0

H1(f)

∼=

H0(f)

0

H0(f)

∼=

H0(f)

∼= 0 ∼=

6



The mapsH0(f) : H0(Sn;Z2)→ H0(Sn;Z2) andH0(f) : H0(RPn;Z2)→ H0(RPn;Z2)
are obviously isomorphisms (as a singular 0-simplex always generates H0(X) for
X path connected, cf. Proposition 8.3.) Using the isomorphisms in the diagram
above we conclude by induction on the dimension i that Hi(f) and Hi(f) are
isomorphisms for all i.

4. Notice that for any pair X ′ ⊂ X and a group homomorphism φ : A → A′ in-
duces a chain map Cn(X,X ′;A)→ Cn(X,X ′;A′) by φ#(

∑
i aiσi) =

∑
i φ(ai)σi.

Indeed,

∂φ#(
∑
i

aiσi) =
∑
i

φ(ai)∂(σi) = φ#∂(
∑
i

aiσi).

Thus it also induces a homomorphism Hn(φ) : Hn(X,X ′;A) → Hn(X,X ′;A′).
If f : (X,X ′)→ (Y, Y ′), one can see that Hn(φ) commutes with Hn(f) as

Hn(f)Hn(φ)

〈∑
i

aiσi

〉
=

〈∑
i

φ(ai)f ◦ σi

〉
= Hn(φ)Hn(f)

〈∑
i

aiσi

〉
.

Let f : Sn → Sn be a map of degree d and let φ : Z 17→1−−−→ Z2 be a group
homomorphism. Then we have the commutative diagram

Z Hn(Sn;Z) Hn(Sn;Z) Z

Z2 Hn(Sn;Z2) Hn(Sn;Z2) Z2.

∼=

φ

Hn(f)

Hn(φ) Hn(φ)

∼=

φ

∼= Hn(f) ∼=

Commutativity and the fact that the map Hn(f) across the top is multiplication
by d implies that also the map Hn(f) across the bottom is multiplication by
d. Hence the map Hn(f) : Hn(Sn;Z2)→ Hn(Sn;Z2) is an isomorphism if only
only if d = 1 mod 2, or in other words if d is odd. By part (4) an odd map
f : Sn → Sn has odd degree.
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Problem Sheet M

This Problem Sheet is based on Lectures 26 and 27. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem M.1 (†). Let C•, C
′
•, D•, D

′
• be four non-negative chain complexes, and let

f, f ′ : C• → D•, g, g′ : C ′• → D′•,

be chain maps. Assume that f and f ′ are chain homotopic and g and g′ are chain
homotopic. Prove that f ⊗ g is chain homotopic to f ′ ⊗ g′.

Problem M.2 (†). Let 0 → C•
f−→ C ′•

g−→ C ′′• → 0 be a short exact sequence of
non-negative chain complexes. Let D• be a non-negative free chain complex. Prove
that

0→ C• ⊗D•
f⊗id−−−→ C ′• ⊗D•

g⊗id−−−→ C ′′• ⊗D• → 0

is another short exact sequence of chain complexes.

Problem M.3. Compute the homology of RPn × RPm for all even m and n.

Problem M.4 (?). In each of the following three examples, show that X and Y have
the same singular homology groups but they are not homotopy equivalent.

1. X = S1 × S1 and Y = S1 ∨ S1 ∨ S2.

2. X = RP 3 and Y = RP 2 ∨ S3.

3. X = S1 ∨ S2 ∨ S3 and Y = S1 × S2.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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Solutions to Problem Sheet M

This Problem Sheet is based on Lectures 26 and 27. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem M.1 (†). Let C•, C
′
•, D•, D

′
• be four non-negative chain complexes, and let

f, f ′ : C• → D•, g, g′ : C ′• → D′•,

be chain maps. Assume that f and f ′ are chain homotopic and g and g′ are chain
homotopic. Prove that f ⊗ g is chain homotopic to f ′ ⊗ g′.

Solution. Suppose that Q : C• → D• is a chain homotopy from f to f ′, that is
f − f ′ = Q∂ + ∂Q. We claim that Q ⊗ g is chain homotopy from f ⊗ g to f ′ ⊗ g.
Indeed, if c ∈ Cn and d ∈ D• then

((Q⊗ g) ◦∆ + ∆ ◦ (Q⊗ g))(c⊗ d) = (Q⊗ g) (∂c⊗ d+ (−1)n(c⊗ ∂d)) + ∆(Qc⊗ gd)

=Q∂c⊗ gd+ (−1)nQc⊗ g∂d
+ (∂Qc⊗ gd) + (−1)n+1(Qc⊗ ∂gd)

= ((Q∂c+ ∂Qc)⊗ gd) + (−1)n(Qc, g∂d− ∂gd︸ ︷︷ ︸
=0

)

= ((f − f ′)(c)⊗ gd)

= (f ⊗ g)(c⊗ d)− (f ′ ⊗ g)(c⊗ d).

Similarly if P is a chain homotopy from g to g′ then f ′⊗P is a chain homotopy from
f ′ ⊗ g to f ′ ⊗ g′. Putting these together we have chain homotopies:

f ⊗ g '
Q⊗g

f ′ ⊗ g '
f ′⊗P

f ′ ⊗ g′,

which completes the proof.

Problem M.2 (†). Let 0 → C•
f−→ C ′•

g−→ C ′′• → 0 be a short exact sequence of
non-negative chain complexes. Let D• be a non-negative free chain complex. Prove
that

0→ C• ⊗D•
f⊗id−−−→ C ′• ⊗D•

g⊗id−−−→ C ′′• ⊗D• → 0

is another short exact sequence of chain complexes.

Solution. As Dn is free for every n we have with Problem L.3 that

0→ Ci ⊗Dn
fi⊗id−−−→ C ′i ⊗Dn

gi⊗id−−−→ C ′′i ⊗Dn → 0

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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is exact for every i. Thus also

0→
⊕
i+j=n

Ci ⊗Dj

∑
fi⊗id−−−−−→

⊕
i+j=n

C ′i ⊗Dj

∑
gi⊗id−−−−−→

⊕
i+j=n

C ′′i ⊗Dj → 0

is exact for every n. By definition (C• ⊗ C ′•)n =
∑

i+j=nCi ⊗ C ′j and thus

0→ C• ⊗D•
f⊗id−−−→ C ′• ⊗D•

g⊗id−−−→ C ′′• ⊗D• → 0

is exact.

Problem M.3. Compute the homology of RPn × RPm for all even m and n.

Solution. Assume that m < n and that i is odd. Then for any 0 ≤ k ≤ i, at least
one of k and i− k are even. Thus⊕

0≤k≤i
(Hk(RPn)⊗Hi−k(RPm)) = H0(RPn)⊗Hi(RPm)⊕Hi(RPn)⊗H0(RPm).

Thus: ⊕
0≤k≤i

(Hk(RPn)⊗Hi−k(RPm)) ∼=


Z2 ⊕ Z2, i < m

Z2 m < i < n,

0, i > n.

Likewise the torsion groups⊕
0≤k≤i−1

Tor ((Hk(RPn), Hi−k−1(RPm))

contribute r(n,m, i) many copies of Z2, where r(n,m, i) is the number of 0 ≤ k ≤ i
such that k is odd and both k < n and i− k − 1 < m. Explicitly,

r(n,m, i) =


i−1

2 , i < m,
m
2 , m < i < n,

max{n+m+1−i
2 , 0}, i > n.

Putting this altogether, we obtain for i odd that:

Hi(RPn × RPm) =
⊕

s(n,m,i)

Z2,

where

s(n,m, i) =


2 + i−1

2 , i < m,

1 + m
2 , m < i < n,

max{n+m+1−i
2 , 0}, i > n,

A similar analysis works if i is even. The case m = n is easier.
Here is an alternative proof, which uses the idea of a double complex. The chain

complex of RPn and RPm are both of the form

Z 2−→ Z 0−→ Z 2−→ · · · 2−→ Z 0−→ Z.

2



Taking their tensor product yields

Z Z Z . . . Z Z

Z Z Z . . . Z Z

Z Z Z . . . Z Z

...
...

...
...

...
...

Z Z Z . . . Z Z

Z Z Z . . . Z Z

Z Z Z . . . Z Z.

2

2

0

−2

2

2

2 0

−2 2

2

0

0

0

2

0

2 0

0 0

2

2

0

−2

2

2

2 0

−2 2

2

2

0

−2

2

2

2 0

−2 2

2

0

0

0

2

0

2 0

0 0

2 0 2 2 0

Some of the vertical maps become −2, which follows from the fact that ∆|Ci⊗Cj =
∂ ⊗ id + (−1)iid ⊗ ∂. (C•(RPn) ⊗ C•(RPm))k is the direct sum of the groups at
postion (i, j) such that i+ j = k. Consider the square

Z Z

Z Z

0 0

0 2

2 −2

0

0 2

0 0

0
(M.1)

The homology groups at the top right, top left and bottom left of (M.1) are all zero.
At the bottom right the homology is isomorphic to Z2. Suppose (i, j) is the index of
the group at the bottom right of this square. The boundary operator (for notational
simplicity, we will write Cj for all the groups, etc)

∆|(Ci+1⊗Cj)⊕(Ci⊗Cj+1) : (Ci+1 ⊗ Cj)⊕ (Ci ⊗ Cj+1)→ Ci ⊗ Cj

maps the element 1⊗ 1 + 1⊗ 1 to 2⊗ 1 + 1⊗ (−2) = 0. But

∆|(Ci+1⊗Cj+1) : (Ci+1 ⊗ Cj+1)→ (Ci+1 ⊗ Cj)⊗ (Ci ⊗ Cj+1)

sends 1⊗1 to 2⊗1+1⊗2. Thus 1⊗1+1⊗1 is a boundary and 2(1⊗1+1⊗1) is a cycle.
Hence this contributes another Z2 factor to the homology group Hi+j+1(C•(RPn)⊗

3



C•(RPm)). We will write this Z2 factor at position (i + 1, j). (Although strictly
speaking this is not the homology at the index (i + 1, j). However, we only care to
represented it somewhere in the diagonal corresponding to the indexes (i′, j′) such
that i′+ j′ = i+ j+ 1.) The homology groups can therefor pictorially be represented
as follows:

0 Z2 0 . . . 0 Z2 0

0 Z2 0 . . . 0 Z2 Z2

0 Z2 0 . . . 0 Z2 0

...
...

...
...

...
...

0 Z2 0 . . . 0 Z2 0

0 Z2 0 . . . 0 Z2 Z2

0 Z2 0 . . . 0 Z2 Z

By Theorem 27.6 and 26.5, Hk(RPn×RPm) ∼= Hk(C•(RPn)⊗C•(RPm)). Thus
Hk(RPn ×RPm) is the sum of the groups in the diagram at position (n− i, j) with
i+ j = k.

Problem M.4 (?). In each of the following three examples, show that X and Y
have the same homology groups but they are not homotopy equivalent.

1. X = S1 × S1 and Y = S1 ∨ S1 ∨ S2.

2. X = RP 3 and Y = RP 2 ∨ S3.

3. X = S1 ∨ S2 ∨ S3 and Y = S1 × S2.

Solution.

1. With the Künneth Formula we compute

H2(S1 × S1) ∼= H1(S1)⊗H1(S1) ∼= Z
H1(S1 × S1) ∼= H1(S1)⊗H0(S1)⊕H0(S1)⊗H1(S1) ∼= Z2

H0(S1, S1) ∼= H0(S1)⊗H0(S1) ∼= Z,

where we used the fact that Tor(H0(S1),�) = 0 since H0(S1) is free. In order
to compute the homology groups of Y , let X1 be a small open neighbourhood
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of S1 ∨ S1 that deformation retracts onto S1 ∨ S1. Likewise, let X2 be a small
open neighbourhood of S2 that deformation retracts onto S2. Mayer Vietoris
gives

H2(S1 ∨ S1 ∨ S2) ∼= H2(S2) ∼= Z
H1(S1 ∨ S1 ∨ S2) ∼= H1(S1)⊕H1(S1) ∼= Z2

H0(S1 ∨ S1 ∨ S2) ∼= Z.

X and Y are not homotopy equivalent since they have different fundamental
groups. The fundamental group of X has been computed in Problem C.3:

π1(S1 × S1, p) ∼= Z2.

The fundamental group of Y can be computed with Seifert-van-Kampen. As
before, let X1 be a small open neighbourhood of S1 ∨ S1 that deformation
retracts onto S1 ∨ S1. Let X2 be a small open neighbourhood of S2 that
deformation retracts onto S2. Then

π1(S1 ∨ S1 ∨ S2, p) ∼= π1(S1 ∨ S1) ∗ π1(S2) ∼= π1(S1 ∨ S1) ∼= Z ∗ Z.

2. We already know the homology groups of RP 3 :

H3(RP 3) ∼= Z
H2(RP 3) ∼= 0

H1(RP 3) ∼= Z2

H0(RP 3) ∼= Z

Using Mayer Vietoris we can also show that

H3(RP 2 ∨ S3) ∼= H3(S3) ∼= Z
H2(RP 2 ∨ S3) ∼= H2(RP 2) ∼= 0

H1(RP 2 ∨ S3) ∼= H1(RP 2) ∼= Z2

H0(RP 2 ∨ S3) ∼= Z,

which proves that X and Y have the same homology groups.

One way of seeing that X and Y are not homotopy equivalent is to show that
they have non-isomorphic cohomology rings. The cohomology ring of RP 3

with coefficients in Z2 is isomorphic to Z2[t]/t3. The cohomology ring of Y is
isomorphic to Z2[t]/t2 ⊕ Z2. These facts will be proved shortly in lectures.

Another way of seeing that they are not homotopy equivalent is by showing
that their universal covers are different. The universal cover of X is S3 and the
universal cover of Y is S2 ∨S3. This will also be covered in the lecture in a few
weeks.
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3. Using Mayer Vietoris we compute

H3(S1 ∨ S2 ∨ S3) ∼= H3(S2) ∼= Z
H2(S1 ∨ S2 ∨ S3) ∼= H2(S2) ∼= Z
H1(S1 ∨ S2 ∨ S3) ∼= H1(S1) ∼= Z
H0(S1 ∨ S2 ∨ S3) ∼= Z

and the Künneth formula yields

H3(S1 × S2) ∼= H1(S1)⊗H2(S2) ∼= Z
H2(S1 × S2) ∼= H1(S1)⊗H1(S2)⊕H0(S1)⊗H2(S2) ∼= Z
H1(S1 × S2) ∼= H1(S1)⊗H0(S2)⊕H0(S1)⊗H1(S2) ∼= Z
H0(S1 × S2) ∼= Z

There are again several methods to show these spaces are not homotopy equiv-
alent. Here is one using the universal cover.

Suppose f : S1 ∨ S2 ∨ S3 → S1 × S2 is a homotopy equivalence. Then f in-
duces an isomorphism of the homology groups in every degree. In particular
H3(f) : H3(S1∨S2∨S3)→ H3(S1×S2) is an isomorphism. Consider the inclu-
sion i : S3 ↪→ S1 ∨ S2 ∨ S3. Set g := f ◦ i. Using for example cellular homology
we see that H3(i) : H3(S3) → H3(S1 ∨ S2 ∨ S3) is an isomorphism, and thus
also H3(g) : H3(S3)→ H3(S1 × S2) is an isomorphisms.

The universal cover of Y is p : R × S2 → S1 × S2. By the properties of the
universal cover a map S3 → S1 × S2 must factor through p:

S3 R× S2

S1 × S2

g̃

g
p

and we get the following commutative diagram:

H3(S3) H3(R× S1)

H3(S1 × S2).

H3(g̃)

H3(g)
H3(p)

As H3(R×S2) ∼= H3(S2) ∼= 0 this contradicts the fact that H3(g) is an isomor-
phism. Thus the homotopy equivalence f cannot exist.
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Problem Sheet N

This Problem Sheet is based on Lectures 28-31. A (†) means I will use the problem
in lectures; a (?) means I think the problem is challenging.

Problem N.1 (†). LetA be any abelian group. Prove that Hom(�, A) and Hom(A,�)

are left exact. That is, prove that if B
f−→ B′

g−→ B′′ → 0 is exact then so is

0→ Hom(B′′, A)
Hom(g,A)−−−−−−→ Hom(B′, A)

Hom(f,A)−−−−−−→ Hom(B,A),

and if 0→ B
f−→ B′

g−→ B′′ is exact then so is

0→ Hom(A,B)
Hom(A,f)−−−−−−→ Hom(A,B′)

Hom(A,g)−−−−−−→ Hom(A,B′′).

Now let F be a free abelian group. Prove that Hom(F,�) is an exact functor.

Problem N.2 (†). Let A be a finitely generated abelian group, with torsion subgroup
T (A). Prove that Hom(A,Z) ∼= A/T (A) and that Ext(A,Z) ∼= T (A).

Problem N.3 (†). This problem explores divisible groups.

1. Prove that an abelian group D is divisible if and only if the following property
holds: Suppose g : A→ B is an injective homomorphism of abelian groups and
h : A→ D is a homomorphism. Then there exists a homomorphism f : B → D
such that fg = h:

0 A B

D

g

h
f

(Compare this to Lemma 22.3.)

2. Deduce that if D is divisible then Hom(�, D) is an exact functor, and hence
Ext(A,D) = 0 for any abelian group D.

3. Prove that any abelian group B is a subgroup of a divisible group D. Deduce
that for any abelian group B, there exists a short exact sequence

0→ B → D
f−→ E → 0

where both D and E are divisible. In analogy with short free resolutions (Def-
inition 24.11), let us1 call such a sequence a short divisible resolution of B.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
1As with the terminology “short free resolution”, this is not standard.
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4. Let A and B be abelian groups. Let 0 → B → D
f−→ E → 0 denote a short

divisible resolution of B. Prove there is an exact sequence

0→ Hom(A,B)→ Hom(A,D)→ Hom(A,E)→ Ext(A,B)→ 0,

and hence that
Ext(A,B) ∼= coker Hom(A, f).

Hint: Use (29.2) from Theorem 29.3. As remarked there, the proof of (29.2) is
essentially identical to the corresponding exact sequences in Theorem 25.6, and
hence we may take this as already proved. This is not true of the first exact
sequence (29.1) from Theorem 29.3. (In fact, you will prove (29.1) in part (8)
of this problem below.)

5. Let 0→ B → D
f−→ E → 0 denote a short divisible resolution of B. Consider a

cochain complex (C•, d) with

Cn :=


D, n = 0,

E, n = 1,

0, n 6= 0, 1.

and differential d : C0 → C1 given by f : D → E. Prove that H0(C•) = B. Now
let A denote any other abelian group, and consider the new2 cochain complex
Hom(A,C•). Prove that H1(Hom(A,C•)) = Ext(A,B).

6. Prove the following analogue of Proposition 22.4: if h : B → B′ is a homomor-
phism of abelian groups, and 0→ B → D → E → 0 and 0→ B′ → D′ → E′ →
0 are short divisible resolutions of B and B′ respectively, with corresponding
cochain complexes (as in the previous part) C• and (C ′)•, then there exists a
chain map m : C• → (C ′)• such that H0(m) = h. Prove moreover that any two
such chain maps m and m′ are chain homotopic.

7. Deduce that Ext(�, A) : Ab→ Ab is a well-defined contravariant functor.

8. If 0 → A → A′ → A′′ → 0 is an exact sequence of abelian groups then for any
abelian group B there is an exact sequence

0→ Hom(A′′, B)→ Hom(A′, B)→ Hom(A,B)→ Ext(A′′, B)→ Ext(A′, B)→ Ext(A,B)→ 0.

Problem N.4. Let X be a topological space and R a commutative ring. Assume that
the additive groupHF(X;R) has no elements of order 2. Prove that if 〈α〉 ∈ HF(X;R)
has odd degree then 〈α〉 ^ 〈α〉 = 0.

Problem N.5 (?). Compute the cohomology ring structure of HF(Sn) and HF(Tn),
where Tn is the n-torus S1 × · · · × S1︸ ︷︷ ︸

n times

.

2This is again a cochain complex, since Hom(A,�) is a covariant functor.
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Solutions to Problem Sheet N

Problem N.1 (†). LetA be any abelian group. Prove that Hom(�, A) and Hom(A,�)

are left exact. That is, prove that if B
f−→ B′

g−→ B′′ → 0 is exact then so is

0→ Hom(B′′, A)
Hom(g,A)−−−−−−→ Hom(B′, A)

Hom(f,A)−−−−−−→ Hom(B,A), (N.1)

and if 0→ B
f−→ B′

g−→ B′′ is exact then so is

0→ Hom(A,B)
Hom(A,f)−−−−−−→ Hom(A,B′)

Hom(A,g)−−−−−−→ Hom(A,B′′). (N.2)

Now let F be a free abelian group. Prove that Hom(F,�) is an exact functor.

Solution. Let us prove that (N.1) is exact. There are three things to show:

1. Hom(g,A) is injective: If h ∈ Hom(B′′, A) satisfies Hom(g,A)(h) = 0 then h
vanishes on the image of g. But g is surjective and thus h is identically zero.

2. im Hom(g,A) ⊆ ker Hom(f,A): If If h ∈ Hom(B′′, A) then Hom(f,A)◦Hom(g,A)(h) =
h ◦ g ◦ f = 0 as g ◦ f = 0.

3. ker Hom(f,A) ⊆ im Hom(g,A): This one is harder. Suppose k ∈ Hom(B′, A)
satisfes k ◦ f = 0. Define h : B′′ → A by h(b′′) = k(b′) if g(b′) = b′′. This
is well defined, since if g(b′) = g(b′1) = b′′ then b′ − b′1 ∈ ker g = im f . Thus
b′ − b′1 = f(b) for some b ∈ B, and thus g(b′) − g(b′1) = gf(b) = 0. Now
observe that Hom(g,A)(h) = h ◦ g = k, since k ◦ g = h for every b′′ ∈ B. Thus
k ∈ im Hom(g,A).

The proof that (N.2) is similar, and we omit it.
Finally, let us show that Hom(F,�) is exact. By (N.2), we need only show that

if if 0 → A
f−→ B

g−→ C → 0 is exact then Hom(F, g) : Hom(F,B) → Hom(F,C) is
surjective. So suppose h : F → C. By Lemma 22.3, there exists k : F → B such that
g ◦ k = h:

F

B C 0

k
h

g

Thus Hom(F, g)(k) = h. This completes the proof.

Problem N.2 (†). Let A be a finitely generated abelian group, with torsion subgroup
T (A). Prove that Hom(A,Z) ∼= A/T (A) and that Ext(A,Z) ∼= T (A).

Solution.

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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1. Let T (A) ⊂ A be the torsion subgroup of A. Then A/T (A) is torsion free and
finitely generated and thus it is free. Consider the short exact sequence

0→ T (A)→ A→ A/T (A)→ 0. (N.3)

Since A/T (A) is free this sequence splits, and hence by Lemma 28.14 the se-
quence remains exact after applying Hom(�,Z).

Now observe that Hom(T (A),Z) = 0. Indeed, if a ∈ T (A) then there exists
n ∈ N such that na = 0. If φ : T (A) → Z is a homomorphism, then nφ(a) =
φ(na) = 0 which implies φ(a) = 0 as Z is torsion free. Since a was arbitrary, φ
is identically zero.

Thus Hom(A,Z) ∼= Hom(A/T (A),Z).

But now if F is any finitely generated free abelian group then Hom(F,Z) ∼=
F . Indeed, let {b1, . . . , br} be a basis of F . Then the homomorphisms φi ∈
Hom(F,Z) defined by

bj 7→

{
1 i = j

0 i 6= j

form a basis of Hom(F,Z) and the map F → Hom(F,Z) : ai → φai extends to
an isomorphism of groups.

We conclude
Hom(A,Z) ∼= Hom(A/T (A),Z) ∼= A/T (A).

2. Since A/T (A) is free, Ext(A/T (A),Z) = 0. Thus from the long exact sequence
from (29.1) (this sequence will be proved in the next problem!) applied to the
short exact sequence (N.3) we obtain

Ext(A,Z) ∼= Ext(T (A),Z).

It thus suffices to show that if T is a finitely generated torsion subgroup then
Ext(T,Z) ∼= T . For this, let a1, . . . , as be a minimal generating set of T . Note
that

na := min{k ∈ N | ka = 0}

is finite for every a ∈ T . Let F be the free group generated by a1, . . . , as and
let f : F → F denote the homomorphism defined by a 7→ naa on the basis and
extended linearly. A short free resolution of T is given by

0→ F
f−→ F → T → 0.

Then by definition,

Ext(T,Z) = Hom(F,Z)/ im Hom(f,Z) ∼= F/ im f ∼= T,

where the second last isomorphism follows from the fact that as we have just
seen above, Hom(F,Z) ∼= F for a finitely generated free group F . Thus
Ext(A,Z) ∼= Ext(T (A),Z) ∼= T (A).
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Problem N.3 (†). This problem explores divisible groups.

1. Prove that an abelian group D is divisible if and only if the following property
holds: Suppose g : A→ B is an injective homomorphism of abelian groups and
h : A→ D is a homomorphism. Then there exists a homomorphism f : B → D
such that fg = h:

0 A B

D

g

h
f

(Compare this to Lemma 22.3.)

2. Deduce that if D is divisible then Hom(�, D) is an exact functor, and hence
Ext(A,D) = 0 for any abelian group D.

3. Prove that any abelian group B is a subgroup of a divisible group D. Deduce
that for any abelian group B, there exists a short exact sequence

0→ B → D
f−→ E → 0

where both D and E are divisible. In analogy with short free resolutions (Def-
inition 24.11), let us1 call such a sequence a short divisible resolution of B.

4. Let A and B be abelian groups. Let 0 → B → D
f−→ E → 0 denote a short

divisible resolution of B. Prove there is an exact sequence

0→ Hom(A,B)→ Hom(A,D)→ Hom(A,E)→ Ext(A,B)→ 0,

and hence that
Ext(A,B) ∼= coker Hom(A, f).

Hint: Use (29.2) from Theorem 29.3. As remarked there, the proof of (29.2) is
essentially identical to the corresponding exact sequences in Theorem 25.6, and
hence we may take this as already proved. This is not true of the first exact
sequence (29.1) from Theorem 29.3. (In fact, you will prove (29.1) in part (8)
of this problem below.)

5. Consider a cochain complex (C•, d) with

Cn :=


D, n = 0,

E, n = 1,

0, n 6= 0, 1.

and differential d : C0 → C1 given by f : D → E. Prove that H0(C•) = B and
H1(Hom(A,C•)) = Ext(A,B).

1As with the terminology “short free resolution”, this is not standard.
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6. Prove the following analogue of Proposition 22.4: if h : B → B′ is a homomor-
phism of abelian groups, and 0→ B → D → E → 0 and 0→ B′ → D′ → E′ →
0 are short divisible resolutions of B and B′ respectively, with corresponding
cochain complexes (as in the previous part) C• and (C ′)•, then there exists a
chain map m : C• → (C ′)• such that H0(m) = h. Prove moreover that any two
such chain maps m and m′ are chain homotopic.

7. Deduce that Ext(�, A) : Ab→ Ab is a well-defined contravariant functor.

8. If 0 → A → A′ → A′′ → 0 is an exact sequence of abelian groups then for any
abelian group B there is an exact sequence

0→ Hom(A′′, B)→ Hom(A′, B)→ Hom(A,B)→ Ext(A′′, B)→ Ext(A′, B)→ Ext(A,B)→ 0.

Solution.

1. Let us begin with a lemma. Let B be an abelian group and let A and A′ be
subgroups. Suppose C is another abelian group and f : A→ C and f ′ : A′ → C
are homomorphisms such that

f |A∩A′ = f ′|A∩A′ .

Then there is a unique extension f + f ′ of f and f ′ to the subgroup A+A′ of
B given by

(f + f ′)(a+ a′) := f(a) + f ′(a′).

For this consider the short exact sequence

0→ A ∩A′ h−→ A⊕A′ k−→ A+A′ → 0

where h(a) := (a,−a) and k(a, a′) := a + a′. The assumption implies that the
imh lies in the kernel of f ⊕ f ′ : A ⊕ A′ → B. Thus f ⊕ f ′ factors to give a
well-defined map on the quotient A+A′.

Now going to the question, if a + E has infinite order in D/E then the group
generated by E and a is just E ⊕ Z · a and we extend by f ⊕ 0.

First suppose D is divisible. Let g : A → B is an injective homomorphism of
abelian groups and h : A→ D is a homomorphism. Set A′ := g(A). We can view
h as a homomorphism A′ → D, and our goal is to extend h to homomorphism
defined on all of B. We will use Zorn’s Lemma. Consider all pairs (f,E) where
A′ ⊆ E ⊆ B is a subgroup and f : E → D is a homomorphism such that
f |A′ = h. We introduce a partial order on these pairs by inclusions. The union
of any totally ordered chain is itself, and hence by Zorn’s Lemma there exists
a maximal pair (f,E). We claim that E = B. Suppose a ∈ B \ E.

If a+E has infinite order in B/E then we immediately arrive a contradiction,
since then we can extend f to E ⊕ Z · a by setting f(e + na) := f(e) for any
e ∈ E and n ∈ Z. This contradicts maximality of E.

If however a+E has finite order m then we use divisibility to D to find d ∈ D
such that md = f(ma). We then apply the above claim with f ′ : Z · a → D

4



given by f ′(a) = d. Then the claim allows us to extend f to E +Z · a (which is
bigger than E) via f + f ′, which again contradicts maximality of E. Thus we
conclude that E = B.

For the reverse direction, fix d ∈ D and n 6= 0. We consider the inclusion
nZ ↪→ Z and the homomorphism nZ→ D given by nm 7→ md:

0 nZ Z

D

nm 7→md
f

Then if a := f(1) one has na = d. Thus D is divisible.

2. The first statement follows exactly as in the solution of Problem N.1. The
second statement is then immediate from the definition of Ext.

3. First let us remark that any quotient of a divisible group is divisible, as follows
readily from the definition. Let F denote the free abelian group with basis the
elements of B. Then there is a surjection F → B, and B ∼= F/R for some
R ⊂ F . Let Q be the rational vector space on with the elements of B. Then
Q is divisible, and hence so is D := Q/R. Since B ∼= F/R ⊂ Q/R, we see that
B is a subgroup of D. The quotient group D/B is again divisible, and thus we
have a short divisible resolution 0→ B → D → D/B → 0.

4. Let A and B be abelian groups. Let 0→ B → D → E → 0 be a short divisible
resolution of B. Then from (29.2) from Theorem 29.3, there is an exact sequence

0→ Hom(A,B)→ Hom(A,D)→ Hom(A,E)→ Ext(A,B)→ Ext(A,D)→ Ext(A,E)→ 0.

Since D and E are divisible, this sequence actually reads

0→ Hom(A,B)→ Hom(A,D)→ Hom(A,E)→ Ext(A,B)→ 0.

5. This is obvious.

6. Our goal is find homomorphisms g, g′ such that the following diagram com-
mutes:

0 B D E 0

0 B′ D′ E 0

h

i

g

j

g′

i′ j′

(N.4)

The composition i′ ◦ h : B → D′ extends to a map g : D → D′ by divisibility
of D′ (cf. part (1)). The first square then commutes by construction. Next,
regarding i, i′ as inclusion, there is an induced diagram with exact rows:

0 D/B E

0 D′/B′ E′

ḡ

j̄

ḡ′

j̄′
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Then by divisibility of E′, the map j̄′ ◦ ḡ extends to a map g′ : E → E′, and by
construction the second square of (N.4) commutes.

Now suppose k, k′ are two other choices, i.e. so that the following commutes as
well:

0 B D E 0

0 B′ D′ E 0

h

i

k

j

k′

i′ j′

The desired chain homotopy is equivalent to the existence of a map p : E′ → D
such that

p ◦ j = g − k, j′ ◦ p = g′ − k′.

But this is easy: the map g − k vanishes on B, and hence induces a map
D/B → D′. By divisibility this extends to a map p : E → D′, giving us the
following commutative diagram:

0 B D E 0

0 B′ D′ E 0

0

i

g−k

j

g′−k′p

i′ j′

The lower right-hand triangle commutes because j is surjective.

7. This follows from the previous part in exactly the same way that we showed in
Proposition 25.3 that Tor(�, A) is a well-defined covariant functor.

8. Let 0→ B → D → E → 0 denote a short divisible resolution of B, and let C•

denote the corresponding cochain complex. If 0→ A→ A′ → A′′ → 0 is exact
then by part (1) we have a short exact sequence of cochain complexes:

0→ Hom(A′′, C•)→ Hom(A′, C•)→ Hom(A,C•)→ 0.

The desired long exact sequence is then the long exact sequence in cohomology
associated to this short exact sequence of cochain complexes.

Problem N.4. Let X be a topological space and R a commutative ring. Assume that
the additive groupHF(X;R) has no elements of order 2. Prove that if 〈α〉 ∈ HF(X;R)
has odd degree then 〈α〉 ^ 〈α〉 = 0.

Solution. Let d denote the degree of 〈α〉 and suppose that d is odd. Then also d2

is odd and
〈α〉 ^ 〈α〉 = (−1)d

2〈α〉 ^ 〈α〉 = −〈α〉 ^ 〈α〉,

and thus 2 · 〈α〉 ^ 〈α〉 = 0. As HF(X;R) has no elements of order 2 this implies that
〈α〉 ^ 〈α〉 = 0.

Problem N.5 (?). Compute the cohomology ring structure of HF(Sn) and HF(Tn),
where Tn is the n-torus S1 × · · · × S1︸ ︷︷ ︸

n times

.
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Solution.

1. Theorem 29.5 implies that

Hk(Sn) ∼= Hom(Hk(S
n),Z) ∼=

{
Z k = 0, n

0 k 6= 0, n
.

Moreover, the isomorphism is

ζ : Hn(Hom(C•,Z))→ Hom(Hn(C•),Z))

given by
ζ〈γ〉〈c〉 := γ(c).

Let σ+
n : ∆n → Sn be the n-simplex such that σ|∆n\∂∆n is a homeomorphism

onto the upper hemisphere Bn+1
+ and such that ∂σn is mapped to the equator

Sn−1. Similarly, let σ−n : ∆n → Sn be the n-simplex such that σ|∆n\∂∆n is a

homeomorphism onto the lower hemisphere Bn+1
− and such that ∂σn is mapped

to the equator Sn−1. We may assume that ∂σ+
n = −∂σ−n such that σ+ + σ−

is a cycle and 〈σ+ + σ−〉 is a generator of Hn(Sn). Notice that for any 0-
simplex σ0 the class 〈σ0〉 generates H0(Sn). Moreover, if σ̃0 is another 0-simplex
then 〈σ0〉 = 〈σ̃0〉. Let α : Cn(Sn) → Z be a cochain such that 〈α〉 generates
Hn(Sn). We may assume that ζ〈α〉 : Hn(Sn) → Z is the isomorphism that
sends 〈σ+

n +σ−n 〉 to 1. Let β : C0(Sn)→ Z be a cochain such that 〈β〉 generates
H0(Sn). We may assume that ζ〈β〉 : H0(Sn)→ Z is the isomorphism that sends
〈σ0〉 to 1.

In order to compute 〈α ^ β〉 it suffices to evaluate α ^ β on σ+
n + σ−n .

α ^ β(σ+
n + σ−n ) = α(σ+

n ◦ Fn) · β(σ+
n ◦B0) + α(σ−n ◦ Fn) · β(σ−n ◦B0)

= α(σ+
n ) · 1 + α(σ−n ) · 1

= α(σ+
n + σ−n ),

where we used the fact that Fnn = id∆n and that Bn
0 has image e0 = (0, . . . , 0, 1).

Thus 〈α ^ β〉 = 〈α〉.
The product 〈α〉 ^ 〈α〉 must be zero by degree reasons. Indeed 〈α〉 ^ 〈α〉 ∈
H2n(Sn) = 0.

Finally,

β ^ β(σ0) = β(σ0 ◦ F0) · β(σ0 ◦B0) = β(σ0) · β(σ0) = 1 · 1 = 1.

The last equality follows, since for a 0-simplex σi we have σi ◦F0 = σi = σi ◦B0.
We conclude that 〈β〉 ^ 〈β〉 = 〈β〉. The cohomology ring HF(Sn) is therefor
isomorphic to Z[〈α〉]/(〈α〉 ^ 〈α〉 = 0)

2. The Künneth formula gives Hk(S
1 × . . . × S1) ∼=

⊕
i1+...+in=kHi1(S1) ⊗ . . . ⊗

Hin(S1). Moreover, since all groups Hk(S
1 × . . . × S1) are free Theorem 29.5

gives

Hk(S1 × . . .× S1) ∼= Hom(Hk(S
1 × . . .× S1),Z)

∼=
⊕

i1+...+in=k

Hom(Hi1(S1)⊗ . . .⊗Hin(S1),Z).
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Let σ1 : ∆1 → S1 be the 1-cycle such that σ1|∆1\∂∆1 is a homeomorphism onto
S1 \ {p} and such that ∂σ1 is mapped to the point p. We use a superscript to
indicate the factor of the product S1× . . .×S1. A basis of H1(S1× . . .×S1) is
given by sj1 := 〈σ1

0〉 ⊗ . . . 〈σ
j−1
0 〉 ⊗ 〈σj1〉 ⊗ 〈σ

j+1
0 〉 ⊗ . . .⊗ 〈σn0 〉 for j ∈ {1, . . . , n}.

Similarly, a basis of Hk(S
1 × . . . × S1) is given by {si1,...,ikk := 〈σ1

δ1
〉 ⊗ . . . ⊗

〈σnδn〉|i1 < i2 < . . . < ik},where

δj =

{
1 j ∈ {i1, . . . , ik}
0 otherwise

.

Let 〈αj〉 be the elements in H1(S1 × . . .× S1) corresponding to the homomor-
phism

H1(S1 × . . .× S1)→ Z, sj1 7→

{
1 i = j

0 i 6= j
.

Then the 〈αj〉’s form a basis of H1(S1 × . . .× S1). Moreover we see (similar as
in the first part of this exercise) that 〈αj〉 ^ 〈αi〉 vanishes if i = j and if i 6= j it
gives a generator of H2(S1 × . . .× S1) that corresponds to the homomorphism

H2(S1 × . . .× S1)→ Z, si1,i2k 7→

{
1 (i1, i2) = (i, j)

0 otherwise
.

The other products can be calculated in a similar way. The cohomology ring
HF(Tn) is therefore isomorphic to Z[〈α1〉, . . . , 〈αn〉]/(〈αj〉 ^ 〈αj〉 = 0).

Remark: An alternative way to compute HF(Tn) is to use induction on n,
starting from the fact that we know the case n = 1 from the previous part, and
Tn = S1 × Tn−1, and by Corollary 32.9, HF(Tn) ∼= HF(S1)⊗HF(Tn−1).
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Problem Sheet O

This Problem Sheet is based on Lectures 32-35. A (†) means I will use the problem
in lectures; a (?) means I think the problem is challenging.

Problem O.1 (†). Let (C•, ∂) be a non-negative chain complex. Prove that the
function

twist : C• ⊗ C• → C• ⊗ C•
given by

twist(c⊗ c′) = (−1)nmc′ ⊗ c, c ∈ Cn, c′ ∈ Cm,

is a natural chain equivalence.

Problem O.2 (†). Denote by F either the real numbers R, or the complex numbers
C, or the quaternions H. For m = 1, 2 or 4, we can view the sphere Sm(n+1)−1 as a
subset of Fn+1:

Sm(n+1)−1 =

{
(x0, x1, . . . , xn) | xi ∈ F and

n∑
i=0

|xi|2 = 1

}
.

Set FPn =
(
Fn+1 \ {0}

)/
∼, where

(x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn) ⇔ ∃µ ∈ F\{0} such that xi = µyi, ∀ i = 0, . . . , n.

Let p : Sm(n+1)−1 → FPn denote the function that sends a tuple (xi) to its equivalence
class. Prove that

Sm−1 → Sm(n+1)−1 p−→ FPn

is a fibre bundle.

Problem O.3 (†). Let n ≥ 1. Let σn : ∆n → Rn denote the unique affine map such
that1

σn(e0) = −
n∑
i=1

qi, and σn(ei) = qi, i = 1, . . . , n.

Prove that σn determines a generator 〈σn〉 of Hn(Rn,Rn \ 0) ∼= Z.

Problem O.4 (†).
1. Let X be a topological space and let X ′, X ′′ be open subsets of X. Let R be a

ring. Prove that the cup product induces a relative product

HF(X,X ′;R)⊗HF(X,X ′′;R)
^−→ HF(X,X ′ ∪X ′′;R).

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
1See Definition 35.9 for an explanation of this notation.
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2. Let X be a topological space and let X ′ be an open subset of X. Let R be a
ring. Let i : (X, ∅) ↪→ (X,X ′) denote the inclusion. Suppose 〈α〉 ∈ Hn(X;R)
and 〈β〉 ∈ Hm(X,X ′;R). Prove that

〈α〉 ^ Hm(i)〈β〉 = Hn+m(i)(〈α〉 ^ 〈β〉),

where the left-hand side is the normal cup product in X, and the right-hand
side is the relative cup product HF(X;R)⊗HF(X,X ′;R)

^−→ HF(X,X ′;R) from
part (1).

Problem O.5 (†). Let X,Y be topological spaces. Let X ′ ⊆ X and Y ′ ⊆ Y . Assume
that Y ′ is a closed retract of Y and moreover that there exists a neighbourhood W of
Y ′ in Y such that Y ′ is a strong deformation retract of W . Let R be a commutative
ring, and assume that Hn(Y, Y ′;R) is a finitely generated free R-module for all n ≥ 0.
Prove that the relative cross product from Definition 33.34 is an isomorphism:

HF(X,X ′;R)⊗R HF(Y, Y ′;R)
×−→ HF(X × Y, (X ′ × Y ) ∪ (X × Y ′);R).

Hint: The case Y ′ = ∅ was proved in Theorem 33.26.

Problem O.6 (?). In this problem you may use the following result without proof2:

Theorem. Let F → E
p−→ X be a fibre bundle and assume that the fibre F is con-

tractible. Then for all n ≥ 0 and any abelian group A, the map Hn(p) : Hn(X;A)→
Hn(E;A) is an isomorphism.

We will prove this result in a few lectures time. Now let (Bn, Sn−1)→ (E,E′)
p−→

X be a fibre bundle pair with X path connected. Let t ∈ Hn(E,E′;Z2) denote the
Thom class. Let  : (E, ∅) ↪→ (E,E′) denote the inclusion.

1. Prove there is a unique class ε ∈ Hn(X;Z2) such that

Hn(p)(ε) = Hn()(t).

One calls ε the Euler class of the bundle.

2. Prove there is a long exact sequence called the Gysin Sequence given by

· · · → H i(X;Z2)
^ε−→ H i+n(X;Z2)

Hi+n(p|E′ )−−−−−−−→ H i+n(E′;Z2)→ H i+1(X;Z2)→ . . .

Hint: Consider the long exact sequence in cohomology associated to the pair
(E,E′) and try to fit this in to a commutative diagram involving the desired
Gysin Sequence. You will need to use part (2) of Problem O.4 in order to show
the diagram commutes.

3. Use the Gysin sequence to compute the cohomology ring HF(RPn;Z2) for all
n ≥ 1.

2We will sketch the proof of this in Lecture 46, cf. Corollary 46.11. However for vector bundles this
result is obvious: the map s : X → E defined by x 7→ 0x satisfies p ◦ s = idX and s ◦ p ' idE . Similarly if
we start with a sphere bundle Sn → E → X and then form the disk bundle Bn+1 → Z → X (following
the method in Remark 34.16) that has the given sphere bundle as its boundary sphere bundle, then again
the result is obvious, as there is a section s : X → Z that sends x to the point in Zx corresponding to
Ex × {0}.
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Solutions to Problem Sheet O

Problem O.1 (†). Let (C•, ∂) be a non-negative chain complex. Prove that the
function

twist : C• ⊗ C• → C• ⊗ C•
given by

twist(c⊗ c′) = (−1)nmc′ ⊗ c, c ∈ Cn, c′ ∈ Cm,

is a natural chain equivalence.

Solution. Let ∆ denote the boundary operator on C• ⊗ C•. Then if c ∈ Cn and
c′ ∈ Cm then

∆ ◦ τ(c⊗ c′) = (−1)nm∆(c′ ⊗ c)
= (−1)nm

(
∂c′ ⊗ c+ (−1)mc′ ⊗ ∂c

)
= (−1)nm∂c′ ⊗ c+ (−1)nm+mc′ ⊗ ∂c.

Going the other way round:

τ ◦∆(c⊗ c′) = τ
(
∂c⊗ c′ + (−1)nc⊗ ∂c′

)
= (−1)(n−1)mc′ ⊗ ∂c+ (−1)n+n(m−1)∂c′ ⊗ c
= (−1)nm−mc′ ⊗ ∂c+ (−1)nm∂c′ ⊗ c.

Since (−1)m = (−1)−m, it follows that ∆ ◦ τ = τ ◦ ∆. It is then clear that τ is a
natural isomorphism.

Problem O.2 (†). Denote by F either the real numbers R, or the complex numbers
C, or the quaternions H. For m = 1, 2 or 4, we can view the sphere Sm(n+1)−1 as a
subset of Fn+1:

Sm(n+1)−1 =

{
(x0, x1, . . . , xn) | xi ∈ F and

n∑
i=0

|xi|2 = 1

}
.

Set FPn =
(
Fn+1 \ {0}

)/
∼, where

(x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn) ⇔ ∃µ ∈ F\{0} such that xi = µyi, ∀ i = 0, . . . , n.

Let p : Sm(n+1)−1 → FPn denote the function that sends a tuple (xi) to its equivalence
class. Prove that

Sm−1 → Sm(n+1)−1 p−→ FPn

is a fibre bundle.

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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Solution. We define an open cover {V0, V1, . . . , V } of FPn by setting

Vi := {[x0, x1, . . . , xn] ∈ FPn | xi 6= 0} ,

where [· · · ] denotes the equivalence class under p. Then define maps hi : Vi×Sm−1 →
p−1(Vi) by

hi ([x0, x1, . . . , xn], λ) :=
|xi|λ

xi
√∑

k |xk|2
(x0, x1, . . . , xn).

The map ki : p
−1(Vi)→ Vi × Sm−1 given by

ki(x0, x1, . . . , xn) :=

(
[x0, x1, . . . , xn],

xi
|xi|

)
is an inverse for hi. Thus the hi are homeomorphisms.

Problem O.3 (†). Let n ≥ 1. Let σn : ∆n → Rn denote the unique affine map such
that1

σn(e0) = −
n∑
i=1

qi, and σn(ei) = qi, i = 1, . . . , n.

Prove that σn determines a generator 〈σn〉 of Hn(Rn,Rn \ 0) ∼= Z.

Solution. First note that the image Σ := im(σ) ⊂ Rn of σ is an n-simplex in Rn
satisfying 0 ∈ Σ\∂Σ and (e.g. by excision) we have an isomorphism H•(Rn,Rn \0) ∼=
H•(Σ, ∂Σ).
Next, note that we also have an isomorphism

H•(∆
n, ∂∆n)

∼=→ H•(Σ, ∂Σ) ∼= H•(Rn,Rn \ 0) : 〈τ〉 7→ 〈σn ◦ τ〉

and therefore, in order to show that 〈σn〉 is a generator of Hn(Rn,Rn \ 0) it suffices
to check that the identity map `n : ∆n → ∆n (viewed a a singular simplex) induces
a generator 〈`n〉 of Hn(∆n, ∂∆n) ∼= Z.

Consider the diagram

Hn(∆n, ∂∆n) H̃n−1(∂∆n)

Hn(∆n/∂∆n, ∗)

∼=

∼= (O.1)

The horizontal map is the boundary map from the (reduced) LES for the pair
(∆n, ∂∆n), which is an isomorphism by looking at the neighbouring terms in the
LES. The vertical map is induced by the quotient map (∆n, ∂∆n) → (∆n/∂∆n, ∗)
and is an isomorphism since (∆n, ∂∆n) satisfies the hypotheses of Theorem 19.2.

Let αn : ∆n → ∆n/∂∆n be the quotient map. The image of 〈`n〉 under the
vertical map is 〈αn〉 ∈ Hn(∆n/∂∆n, ∗), while its image under the horizontal map is
the class 〈βn−1〉 ∈ H̃n−1(∂∆n) with

βn−1 = ∂n `n =
n∑
i=0

(−1)iεni ∈ Cn−1(∂∆n),

1See Definition 35.9 for an explanation of this notation.
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where εni : ∆n−1 → ∂∆n is the i-th face map of the simplex ∆n. So once we know
that 〈βn−1〉 generates H̃n−1(∂∆n), we can conclude from (O.1) that 〈αn〉 generates
Hn(∆n/∂∆n, ∗).

It is clear that 〈β0〉 generates H̃0(∂∆1), so we know that 〈α1〉 generatesH1(∆1/∂∆1, ∗),
which is what the problem asks us to prove for n = 1. We now proceed by induction;
for the inductive step, consider the map φ : ∂∆n → ∆n−1/∂∆n−1 which collapses
all except the zero-th face to a point, and the induced map Hn−1(φ) : H̃n−1(∂∆n)→
Hn−1(∆n−1/∂∆n−1, ∗). Observe that Hn−1(φ)〈βn−1〉 = 〈αn−1〉; since 〈αn−1〉 gener-
ates by inductive assumption, we conclude that 〈βn−1〉 generates.

Problem O.4 (†).
1. Let X be a topological space and let X ′, X ′′ be open subsets of X. Let R be a

ring. Prove that the cup product induces a relative product

HF(X,X ′;R)⊗HF(X,X ′′;R)
^−→ HF(X,X ′ ∪X ′′;R).

2. Let X be a topological space and let X ′ be an open subset of X. Let R be a
ring. Let i : (X, ∅) ↪→ (X,X ′) denote the inclusion. Suppose 〈α〉 ∈ Hm(X;R)
and 〈β〉 ∈ Hn(X,X ′;R). Prove that

〈α〉 ^ Hn(i)〈β〉 = Hn+m(i)(〈α〉 ^ 〈β〉),

where the left-hand side is the normal cup product in X, and the right-hand
side is the relative cup product HF(X;R)⊗HF(X,X ′;R)

^−→ HF(X,X ′;R) from
part (1).

Solution.

1. We will assume that X is a cell complex (the general case can be dealt with
via cellular approximation). We denote by Cn(X,X ′ +X ′′;R) the subgroup of
Cn(X;R) consisting of cochains vanishing on chains in X ′ and on chains in X ′′.
Notice that the usual cup product induces a cup product

Cm(X,X ′;R)× Cn(X,X ′′;R)→ Cm+n(X,X ′ +X ′′;R).

Moreover, we denote by Cn(X ′ + X ′′) the subgroup of Cn(X) consisting of
sums of chains in X ′ and chains in X ′′, and by Cn(X ′+X ′′;R) its dual. Recall
from Theorem 14.2 that the inclusions ι# : C•(X

′ +X ′′) ↪→ C•(X
′ ∪X ′′) form

a chain homotopy equivalence and hence induces isomorphisms on homology
(note that X ′, X ′′ are open). Therefore, by dualizing we get that the restrictions
ι# : C•(X ′ ∪ X ′′;R) → C•(X ′ + X ′′;R) induce isomorphisms on cohomology.
Moreover, we have inclusions j : C•(X,X ′ ∪X ′′;R) ↪→ C•(X,X ′ +X ′′;R) and
hence we get the following commutative diagram where the rows are short exact
sequences:

0 C•(X,X ′ ∪X ′′;R) C•(X;R) C•(X ′ ∪X ′′;R) 0

0 C•(X,X ′ +X ′′;R) C•(X;R) C•(X ′ +X ′′;R) 0

id ι# (O.2)
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This leads to the following commutative diagram on the cohomology level, where
the rows are long exact sequences:

Hn−1(X ′ ∪X ′′;R) Hn(X,X ′ ∪X ′′;R) Hn(X;R) Hn(X ′ ∪X ′′;R)

Hn−1(X ′ +X ′′;R) Hn(X,X ′ +X ′′;R) Hn(X;R) Hn(X ′ +X ′′;R)

∼= id∼= ι#∼=

(O.3)
By the 5-Lemma we conclude that we have isomorphisms

Hn(X,X ′ ∪X ′′;R) ∼= Hn(X,X ′ +X ′′;R),

and hence the cup product induces a relative cup product

HF(X,X ′;R)⊗HF(X,X ′′;R)
^−→ HF(X,X ′ ∪X ′′;R).

2. This follows from the definition of the relative cup product as in the previous
part of this problem. We will treat the general case. As we have seen in the
previous part, the usual cup product induces a cup product Cm(X,X ′;R) ⊗
Cn(X,X ′′;R)

^−→ Cm+n(X,X ′ + X ′′;R) and hence we get the following com-
mutative diagram (the vertical maps are induced by the respective inclusions):

Cm(X,X ′;R)⊗ Cn(X,X ′′;R) Cm+n(X,X ′ +X ′′;R) Cm+n(X,X ′ ∪X ′′;R)

Cm(X;R)⊗ Cn(X;R) Cm+n(X;R) Cm+n(X;R).

^

j

∼

^ =

Recall from the previous part that j is a quasi-isomorphism, that is, it induces
an isomorphism on cohomology. Therefore we obtain the following commutative
diagram on the cohomology level:

Hm(X,X ′;R)⊗Hn(X,X ′′;R) Hm+n(X,X ′ ∪X ′′;R)

Hm(X;R)⊗Hn(X;R) Hm+n(X;R),

^

^

from which the result follows.

Problem O.5 (†). Let X,Y be topological spaces. Let X ′ ⊆ X and Y ′ ⊆ Y . Assume
that Y ′ is a closed retract of Y and moreover that there exists a neighbourhood W of
Y ′ in Y such that Y ′ is a strong deformation retract of W . Let R be a commutative
ring, and assume that Hn(Y, Y ′;R) is a finitely generated free R-module for all n ≥ 0.
Prove that the relative cross product from Definition 33.34 is an isomorphism:

HF(X,X ′;R)⊗R HF(Y, Y ′;R)
×−→ HF(X × Y, (X ′ × Y ) ∪ (X × Y ′);R).

Hint: The case Y ′ = ∅ was proved in Theorem 33.26.
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Solution. We already did the case Y ′ = ∅ in the proof of Theorem 33.26. Let
∗ denote the point corresponding to Y ′ in the quotient space Y/Y ′. By Theorem
19.2, Hn(Y, Y ′) ∼= Hn(Y/Y ′, ∗) for all n ≥ 0. Using naturality of the Dual Universal
Coefficients Theorem 29.5 and the Five Lemma, one sees that the same holds for
cohomology with coefficients in R (or indeed, any abelian group): Hn(Y, Y ′;R) ∼=
Hn(Y/Y ′, ∗;R) for all n ≥ 0.

Consider the following commutative diagram:

HF(X,X ′;R)⊗R HF(Y/Y ′, ∗;R) HF(X,X ′;R)⊗R HF(Y, Y ′;R)

HF(X × (Y/Y ′), (X ′ × (Y/Y ′)) ∪ (X × ∗)) HF(X × Y, (X ′ × Y ) ∪ (X × Y ′);R)

× ×

The top horizontal map is an isomorphism due to the discussion above. The lower
horizontal map is an isomorphism, since the two quotient spaces are homeomorphic.
Thus if we prove the left-hand vertical map is an isomorphism, then the right-hand
one is too. This reduces the theorem to dealing with the case where Y ′ is a point.

So assume Y ′ consists of a single point p. Since p is a retract of Y , the long exact
sequence of the pair (Y, p) splits. Thus by Lemma 25.13, we can tensor this sequence
with H•(X,X ′;R) and remain exact. Thus the top row of the following commutative
diagram is exact, where we omit the R from the notation so it fits on the page:

HF(X,X ′)⊗R HF(Y, p) HF(X,X ′)⊗R HF(Y ) HF(X,X ′)⊗R HF(p)

HF(X × p,X ′ × p)

HF(X × Y, (X × p) ∪ (X ′ × Y )) HF(X × Y,X ′ × Y ) HF((X × p) ∪ (X ′ × Y ), X ′ × Y )

× ×

×

∼=

The bottom row is also exact, since (X × p,X ′ × p) is a retract of (X × Y,X ′ × Y ).
The middle and right-hand cross products are isomorphisms by Theorem 33.26, and
thus by the Five Lemma the left-hand cross product is also an isomorphism.

Problem O.6 (?). In this problem you may use the following result without proof2:

Theorem. Let F → E
p−→ X be a fibre bundle and assume that the fibre F is con-

tractible. Then for all n ≥ 0 and any abelian group A, the map Hn(p) : Hn(X;A)→
Hn(E;A) is an isomorphism.

We will prove this result in a few lectures time. Now let (Bn, Sn−1)→ (E,E′)
p−→

X be a fibre bundle pair with X path connected. Let t ∈ Hn(E,E′;Z2) denote the
Thom class. Let  : (E, ∅) ↪→ (E,E′) denote the inclusion.

2We will sketch the proof of this in Lecture 46, cf. Corollary 46.11. However for vector bundles this
result is obvious: the map s : X → E defined by x 7→ 0x satisfies p ◦ s = idX and s ◦ p ' idE . Similarly if
we start with a sphere bundle Sn → E → X and then form the disk bundle Bn+1 → Z → X (following
the method in Remark 34.16) that has the given sphere bundle as its boundary sphere bundle, then again
the result is obvious, as there is a section s : X → Z that sends x to the point in Zx corresponding to
Ex × {0}.
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1. Prove there is a unique class ε ∈ Hn(X;Z2) such that

Hn(p)(ε) = Hn()(t).

One calls ε the Euler class of the bundle.

2. Prove there is a long exact sequence called the Gysin Sequence given by

· · · → H i(X;Z2)
^ε−→ H i+n(X;Z2)

Hi+n(p|E′ )−−−−−−−→ H i+n(E′;Z2)→ H i+1(X;Z2)→ . . .

Hint: Consider the long exact sequence in cohomology associated to the pair
(E,E′) and try to fit this in to a commutative diagram involving the desired
Gysin Sequence. You will need to use part (2) of Problem O.4 in order to show
the diagram commutes.

3. Use the Gysin sequence to compute the cohomology ring HF(RPn;Z2) for all
n ≥ 1.

Solution.

1. This is immediate as Hn(p) is an isomorphism by the Theorem.

2. Consider the following diagram. The top row is the long exact sequence in
cohomology for the pair (E,E′), where as above  : (E, ∅) ↪→ (E,E′) is the
inclusion. The bottom row is the Gysin sequence.

H i+n(E,E′;Z2) H i+n(E;Z2) H i+n(E′;Z2) H i+n+1(E,E′;Z2)

H i(X;Z2) H i+n(X;Z2) H i+n(E′;Z2) H i+1(X;Z2)

Hi+n()

^ε

L

Hi+n(p|E′ )

Hi+n(p) ∼= L

The vertical maps are all isomorphisms. We need only check that the diagram
commutes, and the only square for which this is not immediate is the first one.
But if 〈α〉 ∈ H i(X : Z2) then

H i+n() ◦ L〈α〉 = H i+n()(H i(p)〈α〉 ^ t)

(∗)
= H i(p)〈α〉 ^ Hn()(t)

(†)
= H i(p)〈α〉 ^ Hn(p)〈ε〉
= H i+n(p)(〈α〉 ^ ε).

Here (∗) used part (2) of Problem O.4 and (†) used the definition of the Euler
class.

3. Note that RPn is path connected. We have a sphere bundle S0 → Sn
p−→ RPn

(c.f. Problem O.2), where p is the usual quotient map. Consider the mapping
cylinder

Z :=

(
(Sn × I) t RPn

)
/ ∼,
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where (y, 1) ∼ p(y). There is a natural map q : Z → RPn with fibre Zx =
(p−1
x × I)/(p−1(x) × 1) ∼= B1 over x ∈ RPn. Identifying p−1(x) ∼= p−1(x) × 1

we have that
(B1, S0)→ (Z, Sn)

q−→ RPn

is a fibre bundle pair with q|Sn = p (see Remark 34.16). Let ε ∈ H1(RPn;Z2)
be the Euler-class. Now by the Gysin sequence

. . .→ H i(RPn;Z2)
^ε−→ H i+1(RPn;Z2)

Hi+1(p)−−−−−→ H i+1(Sn;Z2)→ H i+1(RPn;Z2)→ . . . .

Thus as H i(Sn;Z2) = 0 for i 6= 0, n, the map ^ ε is an isomorphism for
0 < i < n − 1, and in degree 0 it is surjective and in degree n − 1 it is also
injective. In degree 0 is always injective (this can also bee seen by analyzing
the starting part of the LES), so to complete the proof that � 7→ � ^ ε is an
isomorphism in all degrees 0 ≤ i ≤ n − 1, it remains to show that in degree
n− 1 it is also surjective. For this look at the tail end of the sequence:

Hn−1(RPn;Z2)
^ε−→ Hn(RPn;Z2)→ Hn(Sn;Z2)

h−→ Hn(RPn;Z2)→ Hn+1(RPn;Z2).

The last group is zero as RPn has a cell structure with no (n+ 1)-dimensional
cells. Thus the map h must be surjective. Since both groups are Z2, h must be
an isomorphism. Thus ^ ε is surjective and hence an isomorphism.

We conclude that H•(RPn;Z) ∼= Z2[ε]/εn+1 with ε of degree 1.
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Problem Sheet P

This Problem Sheet is based on Lectures 36-39. A (†) means I will use the problem
in lectures; a (?) means I think the problem is challenging.

Problem P.1 (†). Let M be an n-dimensional topological manifold. Let K ⊆M be
a compact connected subset. Let R be a commutative ring and assume that M is
not orientable along K. Prove that

Hn(M,M \K;R) = {r ∈ R | 2r = 0} .

Problem P.2 (†). Let M be an n-dimensional topological manifold. Let K ⊆M be
a closed connected subset. Prove that:

1. If K is non-compact then the torsion subgroup of Hn−1(M,M \K) is zero.

2. If K is compact and M is orientable along K then the torsion subgroup of
Hn−1(M,M \K) is also zero.

3. If K is compact and M is not orientable along K then the torsion subgroup of
Hn−1(M,M \K) is isomorphic to Z2.

Problem P.3 (†). Let X be a topological spaces. Let α ∈ Cn(X;R) and c ∈
Cn+m(X;R). Prove that

∂(α _ c) = (−1)n(α _ ∂c− dα _ c).

Problem P.4 (†). Let f : (L,K) → (L′,K ′) be a continuous map between com-
pact pairs (L,K) and (L′,K ′) contained in some Euclidean neighbourhood retract
X. Let A be an abelian group and let k ≥ 0. Prove that the induced map
Ȟk(f) : Ȟk(L′,K ′;A) → Ȟk(L,K;A) from Definition 38.10 is well defined. De-
duce that the Čech cohomology functor from Theorem 38.11 satisfies the homotopy
axiom. Hint: Use part (2) of Proposition 38.4.

Problem P.5 (?). Let M be a closed connected topological manifold of dimension
n − 1, and let f : M → Sn be a homeomorphism onto its image. Set K := f(M).
Prove Alexander Duality:

H̃k(M) ∼= H̃n−k−1(Sn \K).

Deduce that Sn \K has two connected components. Remark: This is a far-reaching
generalisation of the Jordan-Brouwer Separation Theorem 17.11.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
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Solutions to Problem Sheet P

Problem P.1 (†). Let M be an n-dimensional topological manifold. Let K ⊆M be
a compact connected subset. Let R be a commutative ring and assume that M is
not orientable along K. Prove that

Hn(M,M \K;R) = {r ∈ R | 2r = 0} .

Solution. Let Ori(M)→M denote the projection and let

G := {ϕ : Ori(M)→ Ori(M) | ϕ is a homeomorphism, p ◦ ϕ = p}

be the automorphism-group of Ori(M). We will use the following two lemmas.

Claim. Let M be a connected n dimensional topological manifold. Then Ori(M) is
a double covering with automorphism group

G ∼= Z2 = {1, ψ |ψ2 = 1}.

Let ψ act on R and Ori(M) by multiplication by −1. Then the associated covering

Ori(M)×G R := (Ori(M)×R)/G

is isomorphic to O(M ;R) =
⊔
x∈M Hn(M,M \ x;Z)⊗R.

Proof. Let ϕ ∈ G, then ϕ is fibre-preserving, since p◦ϕ = p. As the fibres of Ori(M)
are discrete and ϕ is continuous, ϕ is determined by its value at a single point. (If
ϕ interchanges the two points in the fibre we have ϕ2 = id, otherwise ϕ = id.) The
map

f : Ori(M)×R −→
⊔
x∈M

Hn(M,M \ x;Z)⊗R : (u, r) 7→ u⊗ r

descends to

f̄ : Ori(M)×G R −→
⊔
x∈M

Hn(M,M \ x;Z)⊗R : [(u, r)] 7→ u⊗ r

where [(u, g)] denotes the equivalence class of (u, g). Any element u⊗r ∈ Hn(M,M \
x;Z) ⊗ R can be written as v ⊗ s, where u ∈ Hn(M,M \ x;Z) is a unit. Moreover
f([(u, r)]) = u⊗ r vanishes if and only if r = 0. Thus f̄ is an isomorphism.

Claim. Sections in Γ(K;R) are in one-to-one correspondence with continuous maps

λ : Ori(M)|K −→ R

satisfying λ ◦ ϕ = −λ.

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.
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Proof. By the previous claim, a section

s : K →
⊔
x∈K

Hn(M,M \ x;R)

corresponds to a section s : K → (Ori(M)×G R)|K . Define

λ : Ori(M)|K → R : ux → rx,

where rx ∈ R is given by s(x) = [(ux, rx)]. Then λ(−ux) = −rx and thus λ◦ϕ = −λ.
Conversely for a given λ : Ori(M)|K → R with λ ◦ ϕ = −λ, define

s : K → (Ori(M)×G R)|K : x 7→ [(ux, λ(ux)] = [(−ux, λ(−ux))].

By the second claim, a section in Γ(K;R) corresponds to a continuous map λ :
Ori(M)|K → R satisfying λ◦ϕ = −λ. Since M is non-orientable along K, Ori(M)|K
is connected and therefore λ is constant, i.e. λ ≡ r for some r ∈ R. But λ ◦ ϕ = −λ
implies r = −r, i.e. 2r = 0.

Since K is compact, Theorem 36.19 yields an isomorphism Φ(K) : Hn(M,M \
K;R)→ Γc(K;R) = Γ(K;R) and we obtain the result.

Problem P.2 (†). Let M be an n-dimensional topological manifold. Let K ⊆M be
a closed connected subset. Prove that:

1. If K is non-compact then the torsion subgroup of Hn−1(M,M \K) is zero.

2. If K is compact and M is orientable along K then the torsion subgroup of
Hn−1(M,M \K) is also zero.

3. If K is compact and M is not orientable along K then the torsion subgroup of
Hn−1(M,M \K) is isomorphic to Z2.

Solution. Notice that the torsion subgroup T (G) of an abelian group G is

T (G) ∼=
⊕

p prime

Tp(G)

where Tp(G) :=
⊕

p prime{g ∈ G | ∃n ∈ Z : png = 0}. Moreover, recall that we have
Tor(G,Zq) ∼= {g ∈ G | qg = 0}.

1. Let q ∈ N>1. As K is non-compact, Theorem 37.8 yields

0 ∼= Hn(M,M \K;Zq)
∼= (Hn(M,M \K;Z)⊗ Zq)⊕ Tor(Hn−1(M,M \K;Z),Zq)
∼= Tor(Hn−1(M,M \K;Z),Zq),

where the second identity follows from the universal coefficient theorem and
the third identity follows again from Theorem 37.8. Since q was arbitrary, this
shows T (Hn−1(M,M \K;Z)) = 0.
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2. Let q ∈ N>1. As K is compact and M orientable along K, Theorem 37.8 implies

Zq ∼= Hn(M,M \K;Zq)
∼= (Hn(M,M \K;Z)⊗ Zq)⊕ Tor(Hn−1(M,M \K;Z),Zq)
∼= Zq ⊕ Tor(Hn−1(M,M \K;Z),Zq),

where the second identity follows from the universal coefficient theorem and the
third identity follows again from Theorem 37.8. Therefore, Tor(Hn−1(M,M \
K;Z),Zq) = 0 and as q was arbitrary it follows that the torsion subgroup of
Hn−1(M,M \K;Z) is zero.

3. We know that Hn−1(M,M \K) is finitely generated and hence we may write

T (Hn−1(M,M \K)) ∼=
m⊕
i=1

Z`i , `i ≥ 2,m ≥ 0.

Let q ∈ N. Using the result from Problem P.1 twice as well as the universal
coefficient theorem, we get:

{r ∈ Zq | 2r = 0} ∼= Hn(M,M \K;Zq)
∼= (Hn(M,M \K)⊗ Zq)⊕ Tor(Hn−1(M,M \K),Zq)
∼= Tor(Hn−1(M,M \K),Zq).

Note that

{r ∈ Zq | 2r = 0} =

{
0, if q is odd

{0, q2}, if q is even

and

Tor(Hn−1(M,M \K),Zq) ∼= Tor(

m⊕
i=1

Z`i ,Zq) ∼=
m⊕
i=1

Zgcd(`i,q).

We conclude that for even q the following holds:

m⊕
i=1

Zgcd(`i,q)
∼= Z2,

which implies that m = 1 and `1 = 2. This shows the result

T (Hn−1(M,M \K)) ∼= Z2.

Problem P.3 (†). Let X be a topological spaces. Let α ∈ Cn(X;R) and c ∈
Cn+m(X;R). Prove that

∂(α _ c) = (−1)n(α _ ∂c− dα _ c).

Solution. We will make use of Lemma 30.12 throughout. In particular

εn+m
i ◦ Fn+m−1

n =

{
Fn+m
n+1 ◦ ε

n+1
i , if i ≤ n

Fn+m
n , if i ≥ n+ 1,
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and

εn+m
i ◦Bn+m−1

m−1 =

{
Bn+m
m−1 , if i ≤ n

Bn+m
m ◦ εmi−n, if i ≥ n+ 1.

Using these identities we compute the following three expressions.

α _ ∂c =
n+m∑
i=0

(−1)iα _ (c ◦ εn+m
i )

=

n+m∑
i=0

(−1)iα(c ◦ εn+m
i ◦ Fn+m−1

n ) · (c ◦ εn+m
i ◦Bn+m−1

m−1 )

=

n∑
i=0

(−1)iα(c ◦ Fm+n
n+1 ◦ ε

n+1
i ) · (c ◦Bn+m

m−1 )

+

n+m∑
i=n+1

(−1)iα(c ◦ Fn+m
n ) · (c ◦Bn+m

m ◦ εmi−n) (P.1)

dα _ c = dα(c ◦ Fn+m
n+1 ) · (c ◦Bn+m

m−1 )

= α(∂(c ◦ Fn+m
n+1 )) · (c ◦Bn+m

m−1 )

=

n+1∑
i=0

(−1)iα(c ◦ Fn+m
n+1 ◦ ε

n+1
i ) · (c ◦Bn+m

m−1 ) (P.2)

∂(α _ c) = α(c ◦ Fn+m
n ) · ∂(c ◦Bn+m

m )

= α(c ◦ Fn+m
n ) ·

(
m∑
i=0

(−1)i(c ◦Bn+m
m ◦ εmi )

)

=

n+m∑
i=n

(−1)i−nα(c ◦ Fn+m
n ) · (c ◦Bn+m

m ◦ εmi−n) (P.3)

Equations (P.1), (P.2) and (P.3) finally imply the result:

(−1)n(α _ ∂c− dα _ c) =(−1)n · (−1)n+2α(c ◦ Fn+m
n+1 ◦ ε

n+1
n+1︸ ︷︷ ︸

Fn+m
n

) · (c ◦ Bn+m
m−1︸ ︷︷ ︸

Bn+m
m ◦εm0

)

+ (−1)n
n+m∑
i=n+1

(−1)iα(c ◦ Fn+m
n ) · (c ◦Bn+m

m ◦ εmi−n)

=

n+m∑
i=n

(−1)i−nα(c ◦ Fn+m
n ) · (c ◦Bn+m

m ◦ εmi−n)

=∂(α _ c).
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Problem P.4 (†). Let f : (L,K) → (L′,K ′) be a continuous map between pairs
(L,K) and (L′,K ′). Let A be an abelian group and let k ≥ 0. Prove that the
induced map Ȟk(f) : Ȟk(L′,K ′;A) → Ȟk(L,K;A) from Definition 38.10 is well
defined. Deduce that the Čech cohomology functor from Theorem 38.11 satisfies the
homotopy axiom. Hint: Use part (2) of Proposition 38.4.

Solution. We will prove something a little more general. Let K ⊂ L ⊂ X and
K ⊂ L′ ⊂ X ′ be compact pairs in two Euclidean neighbourhood retracts, and suppose
f, g : (L,K) → (L′,K ′) are homotopic maps. By part (1) of Proposition 38.4, we
may assume that both f and g can be extended to F and G respectively on some
neighbourhood of L.

By part (2) or Proposition 38.4, we can find another smaller neighbourhood W
of K in X and a homotopy Ht : W → X ′ such that H0|W = F |W and H1|W = G|W .

Now fix a pair U ′ ⊂ V ′ ⊂ X ′ of open sets in X ′ such that K ′ ⊂ U ′ and L′ ⊂ V ′.
Set

V :=
{
x ∈W | Ht(x) ∈ V ′, ∀ t ∈ [0, 1]

}
, U :=

{
x ∈W | Ht(x) ∈ U ′, ∀ t ∈ [0, 1]

}
.

Then U ⊂ V ⊂ X are open and K ⊂ U , L ⊂ V , and Ht|V : (V,U)→ (V ′, U ′) defines
a homotopy from F |V to G|V . In particular, by the homotopy axiom in singular
homology,

Hk(F |V ) = Hk(G|V ) : Hk(V ′, U ′)→ Hk(V,U).

Now consider the following commutative diagram, where the maps labelled i are all
induced from inclusions, and the unlabelled maps are those induced by the universal
property of the colimit:

Hk(V ′, U ′) Hk(F−1(V ), F−1(U))

Hk(V,U)

Hk(G−1(V ), G−1(U)) Ȟk(L,K)

Hk(F )

Hk(F |V )

Hk(G)

i

i

It follows that the map Hk(V ′, U ′) → Ȟk(L,K) induced by F (i.e. going clockwise
round the outer square) is the same as the map induced by G (i.e. going anticlockwise
round the outer square). Since (V ′, U ′) was an arbitrary element of UX′(L′,K ′), it
follows that induced maps Ȟk(L,K)→ Ȟk(L,K) are the same (cf. Definition 38.10.)

Taking f = g shows that the definition of Ȟk(f) does not depend on the choice of
extension F . Thus Ȟk(f) is well-defined, and moreover if f ' g as maps (L,K) →
(L′,K ′) then we have just shown that Ȟk(f) = Ȟk(g). Thus the homotopy axiom
holds for Čech cohomology.

Problem P.5 (?). Let M be a closed connected topological manifold of dimension
n − 1, and let f : M → Sn be a homeomorphism onto its image. Set K := f(M).
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Prove Alexander Duality:

H̃k(M) ∼= H̃n−k−1(Sn \K).

Deduce that Sn \K has two connected components.

Solution. Let y be a point not in K. By the Duality Theorem, using coefficients
in Z2 (remember every manifold is Z2-orientable) we have

Ȟk(K,x;Z2) ∼= Hn−k(S
n \ x, Sn \K;Z2).

Since Hk(S
n \ x, y;Z2) = 0 for all k ≥ 0, from the long exact sequence of the triple

we have Hn−k(S
n \ x, Sn \ K;Z2) ∼= Hn−k−1(Sn \ K, y;Z2). Since both K and x

are an Euclidean neighbourhood retracts by Corollary 38.5, we have Ȟk(K,x;Z2) ∼=
Hk(K,x;Z2), and thus

Hk(K,x;Z2) ∼= Hn−k−1(Sn \K, y;Z2).

Finally using Corollary 12.22, we obtain

H̃k(M ;Z2) ∼= H̃n−k−1(Sn \K;Z2).

Since Hn−1(M ;Z2) ∼= Z2 by Theorem 37.8, we obtain H̃0(Sn \K;Z2) = Z2, which
implies that Sn \ K has two path connected components by Corollary 12.12. Fi-
nally, since Sn \K is open (in Sn), it is locally pathwise connected. Thus the path
components agree with the connected components, and the result follows.
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Problem Sheet Q

This Problem Sheet is based on Lectures 40, 41 and 42. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem Q.1 (†). Let C be a category and A,B,C ∈ obj(C). Prove that:

1. If the products A uB and B uA exist then they are isomorphic:

A uB ∼= B uA.

2. If the coproducts A tB and B tA exist then they are isomorphic:

A tB ∼= B tA.

3. If the products A uB, B u C, (A uB) u C and A u (B u C) all exist then:

(A uB) u C ∼= A u (B u C).

4. If the coproducts A tB, B t C, (A tB) t C and A t (B t C) all exist then:

(A tB) t C ∼= A t (B t C).

Problem Q.2 (†). Let R and R′ be rings (not necessarily commutative), and let M
be an (R,R′)-bimodule. Prove that (�⊗RM,HomR′(M,�)) forms an adjoint pair.
Prove also that (M ⊗R′ �,HomR(M,�)) forms an adjoint pair.

Problem Q.3 (†). Let A be a set, and consider the functor Hom(A,�) : Sets→ Sets.
Construct a functor T : Sets→ Sets such that (T,Hom(A,�)) forms an adjoint pair.
Does there exist a functor S : Sets→ Sets such that (Hom(A,�), S) forms an adjoint
pair?

Problem Q.4 (†). Let C be a category. Suppose A1, A2, B1, B2 ∈ obj(C) are four
objects and fi : Ai → Bi are morphisms for i = 1, 2.

1. Prove that if the products A1 u A2 and B1 u B2 exist then there is a unique
morphism f1uf2 : A1uA2 → B1uB2 such that the following diagram commutes
for i = 1, 2, where the vertical maps are those induced from the limit:

A1 uA2 B1 uB2

Ai Bi

f1uf2

fi
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2. Prove that if the coproducts A1 t A2 and B1 tB2 exist then there is a unique
morphism f1tf2 : A1tA2 → B1tB2 such that the following diagram commutes
for i = 1, 2, where the vertical maps are those induced from the colimit:

Ai Bi

A1 tA2 B1 tB2

fi

f1tf2

Problem Q.5 (†). Suppose C is a category and B,C1, C2, D ∈ obj(C).

1. Assume the products B u B and C1 u C2 exist. Suppose fi ∈ Hom(B,Ci) for
i = 1, 2. Prove that

(f1, f2) = (f1 u f2) ◦∆B,

where ∆B ∈ Hom(B,B uB) was defined part (1) of Definition 41.5.

2. Assume the coproducts DtD and C1 tC2 exist. Suppose gi ∈ Hom(Ci, D) for
i = 1, 2. Prove that

(g1, g2) = ∇D ◦ (g1 t g2),

where ∇D ∈ Hom(D tD,D) was defined in part (2) of Definition 41.5.

Problem Q.6 (†). Let (X,x0) denote a pointed space. Let ξ : X∨X ↪→ X×X denote
the inclusion, where as usual we think of X∨X as the subspace (X×{x0})∪({x0}×X)
of X ×X.

1. Assume X is an H-group with multiplication m. Prove that the following
diagram commutes up to homotopy:

X ∨X

X ×X X

ξ
∇X

m

2. Assume X is an H-cogroup with comultiplication µ. Prove that the following
diagram commutes up to homotopy:

X X ∨X

X ×X

µ

∆X
ξ

Problem Q.7 (?). The aim of this exercise is to deduce that spheres are cogroup
objects in hTop∗. Given pointed spaces X and Y , define the smash product X ∧Y
to be the pointed space1 X × Y/(X ∨ Y ) (where as usual we think of X ∨ Y as a
subspace of X × Y .)

1Warning: The smash product really does depend on the basepoint. For instance, I ∧ I is homeo-
morphic to I × I if we choose 0 ∈ I as the basepoint in both factors, but if we choose 1/2 as the basepoint
then it is homeomorphic to the wedge of four copies of I × I.
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1. Prove that if X is a locally compact Hausdorff space then ΣX is homeomorphic
to X ∧ S1 (as pointed spaces).

2. Given a locally compact and Hausdorff space X, let X∞ = X ∪∞ denote the
one-point compactification of X, which we think of as a pointed space where
∞ is chosen as the basepoint2. Prove that if X and Y are locally compact
Hausdorff spaces then X∞ ∧ Y∞ is homeomorphic to (X × Y )∞.

3. Deduce that ΣSn is homeomorphic to Sn+1 for all n ≥ 0, and thus that Sn is
a cogroup object in hTop∗ for all n ≥ 1.

2Since X is locally compact and Hausdorff, X∞ is compact and Hausdorff.
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Solutions to Problem Sheet Q

This Problem Sheet is based on Lectures 40, 41 and 42. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem Q.1 (†). Let C be a category and A,B,C ∈ obj(C). Prove that:

1. If the products A uB and B uA exist then they are isomorphic:

A uB ∼= B uA.

2. If the coproducts A tB and B tA exist then they are isomorphic:

A uB ∼= B uA.

3. If the products A uB, B u C, (A uB) u C and A u (B u C) all exist then:

(A uB) u C ∼= A u (B u C).

4. If the coproducts A tB, B t C, (A tB) t C and A t (B t C) all exist then:

(A tB) t C ∼= A t (B t C).

Solution. We prove (1) only; the other parts are analogous. The products are limits
and hence satisfy the universal property of Definition 40.1. Thus there exist unique
morphisms u : A uB → B uA and v : B uA→ A uB such that

A uB

B uA B

A

u

and
B uA

A uB A

B

v
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commute. The compositions v ◦ u : AuB → AuB and u ◦ v : B uA→ B uA make
the following two diagrams commute:

A uB

A uB B

A

v◦u

B uA

B uA B

A

u◦v

Since idAuB and idBuA also make these diagrams commute, it follows from the unique-
ness property of the universal property that idAuB = v ◦ u and idBuA = u ◦ v.

Problem Q.2 (†). Let R and R′ be rings (not necessarily commutative), and let M
be an (R,R′)-bimodule. Prove that (�⊗RM,HomR′(M,�)) forms an adjoint pair.
Prove also that (M ⊗R′ �,HomR(M,�)) forms an adjoint pair.

Solution. We need to show that there is a natural isomorphism :

Ψ : HomR′(�⊗RM,�)→ HomR(�,HomR′(M,�)).

Given a right R-module A and a left R′ module B, define

Ψ(A,B) : HomR′(A⊗RM,B)→ HomR(A,HomR′(M,B))

by
α 7→ (Ψ(A,B)(α) : a 7→ α(a⊗ ·)).

This is bijective, as the inverse is

β 7→ (a⊗m 7→ β(a)(m)).

If f : A→ A′ and g : B → B′ are module homomorphism the diagram

HomR′(A
′ ⊗RM,B) HomR(A′,HomR′(M,B))

HomR′(A⊗RM,B′) HomR(A,HomR′(M,B′))

Ψ(A′,B)

Hom(f⊗RidM ,g) Hom(f,Hom(M,g))

Ψ(A,B′)

(Q.1)
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commutes. Indeed, start with a morphism α in the top left-hand corner and go
around the diagram in clockwise direction. This yields

α (a′ 7→ α(a′ ⊗ ·)) (a 7→ g ◦ α(f(a)⊗ ·))

Going anticlockwise yields

α (a⊗m 7→ g ◦ α(f(a)⊗m)) (a 7→ g ◦ α(f(a)⊗ ·)).

Hence, the diagram commutes and Ψ is a natural isomorphism, which proves the
statement.

The proof that (M ⊗R′ �,HomR(M,�)) forms an adjoint pair is very similar.
The natural isomorphism

Θ(A,B) : HomR(M ⊗R′ �,�)→ Hom′R(�,HomR(M,�)),

is defined by
α 7→ (Θ(A,B)(α) : a 7→ α(· ⊗ a))

for every left R′-module A and right R-module B.

Problem Q.3 (†). Let A be a set, and consider the functor Hom(A,�) : Sets→ Sets.
Construct a functor T : Sets→ Sets such that (T,Hom(A,�)) forms an adjoint pair.
Does there exist a functor S : Sets→ Sets such that (Hom(A,�), S) forms an adjoint
pair?

Solution. Let T : Sets→ Sets be the functor defined by

T (C) := A× C

and
T (f) := IdA × f

for C ∈ Sets and f a morphism in the category of sets. We claim that there exists a
natural isomorphism Ψ : Hom(A×�,�)→ Hom(�,Hom(A,�)). Given C,D ∈ Sets
define

Ψ(C,D) : Hom(A× C,D)→ Hom(C,Hom(A,D)),

by
α 7→ (Ψ(C,D)(α) : c 7→ α(·, c)).

This is a bijection as
β 7→ ((a, c) 7→ β(c)(a))

is the inverse. It is left to show that ∀C,C ′, D,D′ ∈ Sets and ∀f : C → C ′, g : D → D′

the diagram

HomSets(A× C ′, D) HomSets(C
′,Hom(A,D))

HomSets(A× C,D′) HomSets(C,Hom(A,D′))

Ψ(C′,D)

Hom(IdA×f,g) Hom(f,Hom(A,g))

Ψ(C,D′)

(Q.2)
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commutes. Recall that

Hom(IdA × f, g) : α 7→ g ◦ α ◦ IdA × f

and
Hom(f,Hom(A, g)) : β 7→ g ◦ β ◦ f.

Starting with α on the top left of the diagram and going around clockwise yields the
morphism:

g ◦Ψ(C ′, D)(α) ◦ f : c 7→ g ◦ α(·, f(c)),

where c ∈ C. Counterclockwise yields the morphism:

g ◦ α ◦ IdA × f : c 7→ g ◦ α(·, f(c)).

Thus the diagram commutes and Ψ is a natural isomorphism.
Let S = {a, b} be a set with two elements. Then S = {a} t {b} is the coproduct

of {a} and {b} in the category of Sets. But Hom(A,S) is not the coproduct of
Hom(A, {a}) and Hom(A, {b}). Hence, the functor Hom(A,�) does not preserve
colimits. Hence, Hom(A,�) does not have a right-adjoint, since if it did, it would
preserve colimits. (This is the content of Theorem 40.22.)

Problem Q.4 (†). Let C be a category. Suppose A1, A2, B1, B2 ∈ obj(C) are four
objects and fi : Ai → Bi are morphisms for i = 1, 2.

1. Prove that if the products A1 u A2 and B1 u B2 exist then there is a unique
morphism f1uf2 : A1uA2 → B1uB2 such that the following diagram commutes
for i = 1, 2, where the vertical maps are those induced from the colimit:

A1 uA2 B1 uB2

Ai Bi

f1uf2

fi

2. Prove that if the coproducts A1 t A2 and B1 tB2 exist then there is a unique
morphism f1tf2 : A1tA2 → B1tB2 such that the following diagram commutes
for i = 1, 2, where the vertical maps are those induced from the limit:

Ai Bi

A1 tA2 B1 tB2

fi

f1tf2

Solution. 1. Using Definition 40.1 we obtain the following commutative diagram,
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where k1, k2 are the induced maps of the limit A1 tA2:

A1 uA2 A2

B1 uB2 B2

A1 B1

∃!f1uf2

f1◦k1

f2◦k2

k2

k1

f2

f1

This immediately yields the desired commutative diagrams.

Problem Q.5 (†). Suppose C is a category and B,C1, C2, D ∈ obj(C).

1. Assume the products B u B and C1 u C2 exist. Suppose fi ∈ Hom(B,Ci) for
i = 1, 2. Prove that

(f1, f2) = (f1 u f2) ◦∆C .

2. Assume the coproducts DtD and C1 tC2 exist. Suppose gi ∈ Hom(Ci, D) for
i = 1, 2. Prove that

(g1, g2) = ∇D ◦ (g1 t g2).

Solution.

1. By Proposition 41.1 (f1, f2) ∈ Hom(B,C1 u C2) is the unique morphism such
that the following diagram commutes:

B C1

C2 C1 u C2

f1

f2

(f1,f2)

lC2

lC1
(Q.3)

Similarly, ∆B ∈ Hom(B,B uB) is the unique morphism such that

B B

B B uB

idB

idB
∆B

lB

lB (Q.4)

commutes. Recall also from Problem Q.4, that f1 u f2 ∈ Hom(B uB,C1 uC2)
is the unique morphism such that the diagrams

B uB C1 u C2

B Ci

f1uf2

fi

(Q.5)
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commute for i = 1, 2. Combining the commutative diagrams (Q.4) and (Q.5)
we obtain the following commutative diagram:

B B C1

B B uB

C2 C1 u C2

idB

idB
∆B

f1

f2

lB

lB

f1uf2

lC1

lC2

By the uniqueness of the morphism (f1, f2) in (Q.3) we conclude that (f1, f2) =
f1 u f2 ◦∆B.

Problem Q.6 (†). Let (X,x0) denote a pointed space. Let ξ : X∨X ↪→ X×X denote
the inclusion, where as usual we think of X∨X as the subspace (X×{x0})∪({x0}×X)
of X ×X.

1. Assume X is an H-group with multiplication m. Prove that the following
diagram commutes up to homotopy:

X ∨X

X ×X X

ξ
∇X

m

2. Assume X is an H-cogroup with comultiplication µ. Prove that the following
diagram commutes up to homotopy:

X X ∨X

X ×X

µ

∆X
ξ

Proof. Both parts follow immediately from the definition of an H-(co)group, once one
realises that the inclusion ξ : X ∨X ↪→ X×X agree with the maps (j1, j2) : X ∨X →
X ×X and (q1, q2) : X ∨X → X ×X (the notation is using Proposition 41.1!). For
example, both ξ and (q1, q2) solve the dashed arrow in the following diagram:

X ∨X

X X

X ×X

q1 q2

p1 p2
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Problem Q.7 (?). The aim of this exercise is to deduce that spheres are cogroup
objects in hTop∗. Given pointed spaces X and Y , define the smash product X ∧Y
to be the pointed space1 X × Y/(X ∨ Y ) (where as usual we think of X ∨ Y as a
subspace of X × Y .)

1. Prove that if X is a locally compact Hausdorff space then ΣX is homeomorphic
to X ∧ S1 (as pointed spaces).

2. Given a locally compact Hausdorff space X, let X∞ = X ∪∞ denote the one-
point compactification of X, which we think of as a pointed space where ∞ is
chosen as the basepoint. Prove that if X and Y are locally compact Hausdorff
spaces then X∞ ∧ Y∞ is homeomorphic to (X × Y )∞.

3. Deduce that ΣSn is homeomorphic to Sn+1 for all n ≥ 0, and thus that Sn is
a cogroup object in hTop∗ for all n ≥ 1.

Solution.

1. Since X is locally compact and Hausdorff the map idX × exp: X × I → X ×S1

is a quotient map. Thus the composition p : X × I → X × S1 → X ∧ S1 is a
quotient map. Since (X× I)

/
ker p = ΣX, the claim follows from the definition

of the quotient topology.

2. For Z a compact Hausdorff space and Z ′ ⊂ Z a closed subspace, one has Z/Z ′ ∼=
(Z \ Z ′)∞ (as pointed spaces) by properties of the one-point compactification.
Since X∞ ∧ Y∞ = (X∞ × Y∞)/(X∞ ∨ Y∞) is the quotient of a compact
Hausdorff space by a closed subspace, it follows that X∞∧Y∞ is the one-point
compactification of (X∞ × Y∞) \ (X∞ ∨ Y∞). But

(X∞ × Y∞) = (X × Y ) ∪ ({∞} × Y∞) ∪ (X∞ × {∞}),

and
(X∞ ∨ Y∞) = ({∞} × Y∞) ∪ (X∞ × {∞}),

so their difference is X × Y as required.

3. For n = 0 this is obvious. For n ≥ 1, since the one-point compactification of
Rn is Sn, one has

ΣSn ∼= Sn ∧ S1 ∼= (Rn)∞ ∧ R∞ ∼= (Rn × R)∞ = (Rn+1)∞ ∼= Sn+1.

1Warning: The smash product really does depend on the basepoint. For instance, I ∧ I is homeo-
morphic to I × I if we choose 0 ∈ I as the basepoint in both factors, but if we choose 1/2 as the basepoint
then it is homeomorphic to the wedge of four copies of I × I.
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Problem Sheet R

This Problem Sheet is based on Lectures 43, 44 and 45. A (†) means I will use the
problem in lectures; a (?) means I think the problem is challenging.

Problem R.1 (†). Let A be a set, and assume A is equipped with two binary
operations ∗ and ◦ such that:

1. ∗ and ◦ have a common two-sided unit,

2. ∗ and ◦ are mutually distributive, that is,

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d), ∀ a, b, c, d ∈ A.

Prove that ∗ and ◦ coincide and that each is commutative and associative.

Problem R.2.

1. Let f : (X,x0)→ (Y, y0) be a pointed continuous map. Define a space Ff by:

Ff :=
{

(x,w) ∈ X × Y I | w(1) = f(x)
}
.

Let p : Ff → Y be the map (x,w) 7→ w(0). Prove that p is a fibration with
fibre the mapping fibre Mf of f .

2. Assume X is path connected. Let g : X → Y be any continuous (not necessarily
pointed) map. Prove that one can write g = p ◦ h where p is a fibration and h
is a homotopy equivalence.

Problem R.3. Consider the Hopf fibration S1 → S3 → S2 from Proposition 33.7.
Use the long exact sequence of homotopy groups to prove that1 π2(S2) = Z and that
πn(S3) ∼= πn(S2) for all n ≥ 3. Deduce that π3(S2) 6= 0. Try to visualise this.

Problem R.4. Let p : E → X be a weak fibration with fibre F . Prove that π2(E,F )
is abelian. If F is simply connected, prove that π1(p) : π1(E)→ π1(X) is an isomor-
phism.

Problem R.5 (?). Let X = S2 ∨ S4 and let Y = CP 2. Prove that X and Y have
the same homology groups. Prove however that π4(X) 6∼= π4(Y ) and hence that X
and Y are not homotopy equivalent.

Will J. Merry and Berit Singer, Algebraic Topology II. Last modified: Sept 01, 2018.
1No, you may not simply quote the Hurewicz Theorem 46.1!
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Solutions to Problem Sheet R

This Problem Sheet is based on Lectures 43-46. A (†) means I will use the problem
in lectures; a (?) means I think the problem is challenging.

Problem R.1 (†). Let A be a set, and assume A is equipped with two binary
operations ∗ and ◦ such that:

1. ∗ and ◦ have a common two-sided unit,

2. ∗ and ◦ are mutually distributive, that is,

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d), ∀ a, b, c, d ∈ A.

Prove that ∗ and ◦ coincide and that each is commutative and associative.

Solution. Let e denote the unit. Then

a ∗ b = (a ◦ e) ∗ (e ◦ b) = (a ∗ e) ◦ (e ∗ b) = a ◦ b.

Thus ∗ and ◦ coincide. Next,

a ∗ b = (e ◦ a) ∗ (b ◦ e) = (e ∗ b) ◦ (a ∗ e) = b ◦ a = b ∗ a,

which proves commutativity. Finally

a ∗ (b ∗ c) = (a ◦ e) ∗ (b ◦ c) = (a ∗ b) ◦ (e ∗ c) = (a ∗ b) ∗ c,

which proves associativity.

Problem R.2 (†).
1. Let f : (X,x0)→ (Y, y0) be a pointed continuous map. Define a space Ff by:

Ff :=
{

(x,w) ∈ X × Y I | w(1) = f(x)
}
.

Let p : Ff → Y be the map (x,w) 7→ w(0). Prove that p is a fibration with
fibre the mapping fibre Mf of f .

2. Assume X is path connected. Let g : X → Y be any continuous (not necessarily
pointed) map. Prove that one can write g = p ◦ h where p is a fibration and h
is a homotopy equivalence.

Solution.

Will J. Merry and Berit Singer. Last modified: Sept 01, 2018.

1

https://www.merry.io


1. Let V be a topological space, ht : V → Y be a homotopy and g0 : V → Ff a map
such that p◦g0 = h0. We want to show that there exists a homotopy gt : V → Ff
such that p ◦ gt = ht, ∀t. Let τt,v ∈ Y I be the path s 7→ τt,v(s) := ht(1−s)(v).
Writing

g0 : V → Ff ; v 7→ (x(v), σv = (t 7→ σv(t))

we define the path I → Y

wt,v := σv ∗ τt,v(r) =

{
τt,v(2r), 0 ≤ r ≤ 1

2

σv(2r − 1), 1
2 ≤ r ≤ 1.

This is well-defined since τt,v(1) = h0(v) = p ◦ g0(v) = σv(0). Let

gt : V → Ff ; v 7→ (x(v), wt,v).

Then we have wt,v(1) = σv(1) = f(x(v)) and p ◦ gt(v) = wt,v(0) = ht(v).

2. Define
h : X → Fg; x 7→ (x, cg(x))

where cg(x) is the constant path at g(x) and let

q : Fg → X; (x,w) 7→ x

be the projection. Then we have that q ◦ h = idX and moreover

H : Fg × I → Fg; ((x,w), t) 7→ (x,w|[t,1])

is a homotopy between h ◦ q and idFg. Thus h is a homotopy equivalence and
p ◦ h(x) = cg(x)(1) = g(x).

Problem R.3. Consider the Hopf fibration S1 → S3 → S2 from Proposition 33.7.
Use the long exact sequence of homotopy groups to prove that1 π2(S2) = Z and that
πn(S3) ∼= πn(S2) for all n ≥ 3. Deduce that π3(S2) 6= 0. Try to visualise this.

Solution. By Theorem 45.5 and Theorem 43.18 we have a long exact sequence as
follows:

. . .→ π3(S1)︸ ︷︷ ︸
=0

→ π3(S3)→ π3(S2)→ π2(S1)︸ ︷︷ ︸
=0

→ π2(S3)︸ ︷︷ ︸
=0

→ π2(S2)→ π1(S1)︸ ︷︷ ︸
∼=Z

→ π1(S3)︸ ︷︷ ︸
=0

→ . . .

Therefore (again by Theorem 43.18) we get (by induction) that πn(S3) ∼= πn(S2)
for all n ≥ 3 and π2(S2) ∼= Z. Since π3(S3) 6= 0 by Theorem 43.18, we also have
π3(S2) 6= 0.

Problem R.4. Let p : E → X be a weak fibration with fibre F . Prove that π2(E,F )
is abelian. If F is simply connected, prove that π1(p) : π1(E)→ π1(X) is an isomor-
phism.

1No, you may not simply quote the Hurewicz Theorem 46.1!
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Solution. By Theorem 45.16 (Serre’s Theorem) we have that π2(p′) : π2(E,F ) →
π2(X,x0) is an isomorphism. By Corollary 43.5 π2(X,x0) is abelian, thus π2(E,F )
is abelian as well. If F is simply connected, then π0(F ) = π1(F ) = 0 and the long
exact sequence of Corollary 45.18 takes the form

. . .→ π1(F )︸ ︷︷ ︸
=0

→ π1(E)
π1(p)→ π1(X)→ π0(F )︸ ︷︷ ︸

=0

→ . . .

which proves that π1(p) : π1(E)→ π1(X) is an isomorphism.

Problem R.5 (?). Let X = S2 ∨ S4 and let Y = CP 2. Prove that X and Y have
the same homology groups. Prove however that π4(X) 6∼= π4(Y ) and hence that X
and Y are not homotopy equivalent.

Solution. Let X ⊂ Y be a subspace pf the topological space Y . Recall that X is a
retract of Y is and only if ∃ a continuous map r : Y → X such that r|X = fX (r is
called retraction). S4 is a retract of S2 ∨ S4. Indeed, define

r : S2 × {p2} t {p1} × S4 → {p1} × S4; (x, y) 7→

{
0, if x 6= p1

(x, y), if x = p1.

In particular

S2 ∨ S4

S4 S4

ri

id

commutes and thus we get the following commutative diagram

π4(S2 ∨ S4)

π4(S4) π4(S4).

π4(r)π4(i)

id

By Theorem 43.18 we know that π4(S4) 6= 0 and hence π4(S2 ∨ S4) cannot vanish.

Now consider the fibre bundle S1 → S2n+1 p→ CPn ∼= S2n+1/ ∼ (here n = 2).
By Corollary 45.14 p : S2n+1 → CPn is a weak fibration and using the long exact
sequence for weak fibrations (Corollary 45.18) we get

. . .→ π4(S1)→ π4(S5)→ π4(CP 2)→ π3(S1)→ . . .

By Theorem 43.18 we have that π4(S1) = π3(S1) = 0 and π4(S5) = 0, therefore
π4(CP 2) = 0. Hence π4(CP 2) 6= π4(S2 ∨ S4) and we conclude that CP 2 is not
homotopy equivalent to S2 ∨ S4. (Note that Hi(CP 2) ∼= Hi(S

2 ∨ S4), ∀i.)
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